Skip to main content

Abductive Logic Programming and Linear Algebraic Computation

  • Reference work entry
  • First Online:
Handbook of Abductive Cognition

Abstract

Abduction has been applied to various problems in many fields, and computing abductive explanations is an essential task in such applications. Logic programming has been used for both representation languages and computational procedures for abductive computation. This chapter summarizes the novel approach to use linear algebra for abduction in logic programming developed by the authors. The method is built on top of the fixed-point computation of matrix-vector multiplications for deduction in logic programming, where a matrix and vectors, respectively, represent a logic program and interpretations. For abduction, a similar technique is employed for multiplications of an abductive matrix and observation vectors, together with enumeration of minimal hitting sets by avoiding dimension explosion. Compared with logical methods based on symbolic manipulation, the linear algebraic method has an advantage for efficient computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Apt, K. R., & Bezem, M. (1991). Acyclic programs. New Generation Computing, 9, 335–364.

    Article  MATH  Google Scholar 

  • Aspis, Y., Broda, K., & Russo, A. (2018). Tensor-based abduction in horn propositional programs. In ILP 2018 (CEUR Workshop Proceedings, Vol. 2206, pp. 68–75).

    Google Scholar 

  • Boutilier, C., & Beche, V. (1995). Abduction as belief revision. Artificial Intelligence, 77(1), 43–94.

    Article  MathSciNet  MATH  Google Scholar 

  • Console, L., Dupré, D. T., & Torasso, P. (1991). On the relationship between abduction and deduction. Journal of Logic and Computation, 1(5), 661–690.

    Article  MathSciNet  MATH  Google Scholar 

  • Dai, W.-Z., Xu, Q., Yu, Y., & Zhou, Z.-H. (2019). Bridging machine learning and logical reasoning by abductive learning. In Neural Information Processing Systems 2019 (Vol. 32). Curran Associates, Inc.

    Google Scholar 

  • D’Asaro, F. A., Spezialetti, M., Raggioli, L., & Rossi, S. (2020). Towards an inductive logic programming approach for explaining black-box preference learning systems. In Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (pp. 855–859).

    Google Scholar 

  • de Kleer, J. (1986a). An assumption-based TMS. Artificial Intelligence, 28(2), 127–162.

    Article  Google Scholar 

  • de Kleer, J. (1986b). Problem solving with the ATMS. Artificial Intelligence, 28(2), 197–224.

    Article  Google Scholar 

  • Eiter, T., & Gottlob, G. (1995). The complexity of logic-based abduction. Journal of the ACM (JACM), 42(1), 3–42.

    Article  MathSciNet  MATH  Google Scholar 

  • Eshghi, K. (1988). Abductive planning with event calculus. In ICLP/SLP (pp. 562–579).

    Google Scholar 

  • Gainer-Dewar, A., & Vera-Licona, P. (2017). The minimal hitting set generation problem: Algorithms and computation. SIAM Journal on Discrete Mathematics, 31(1), 63–100.

    Article  MathSciNet  MATH  Google Scholar 

  • Gelfond, M., & Lifschitz, V. (1988). The stable model semantics for logic programming. In ICLP/SLP, 88, 1070–1080.

    Google Scholar 

  • Greiner, R., Smith, B. A., & Wilkerson, R. W. (1989). A correction to the algorithm in Reiter’s theory of diagnosis. Artificial Intelligence, 41(1), 79–88.

    Article  MathSciNet  MATH  Google Scholar 

  • Ignatiev, A., Morgado, A., & Marques-Silva, J. (2016). Propositional abduction with implicit hitting sets. In ECAI 2016 (Frontiers in Artificial Intelligence and Applications, Vol. 285, pp. 1327–1335). IOS Press.

    Google Scholar 

  • Ignatiev, A., Morgado, A., & Marques-Silva, J. (2018). PySAT: A Python toolkit for prototyping with SAT oracles. In International Conference on Theory and Applications of Satisfiability Testing (pp. 428–437).

    Google Scholar 

  • Ignatiev, A., Narodytska, N., & Marques-Silva, J. (2019). Abduction-based explanations for machine learning models. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, pp. 1511–1519).

    Google Scholar 

  • Inoue, K. (1992). Linear resolution for consequence finding. Artificial Intelligence, 56(2–3), 301–353.

    Article  MathSciNet  MATH  Google Scholar 

  • Inoue, K. (2002). Automated abduction. In A. C. Kakas & F. Sadri (Eds.), Computational Logic: Logic Programming and Beyond: Essays in Honour of Robert A. Kowalski Part II (LNAI 2408, pp. 311–341). Springer.

    Google Scholar 

  • Inoue, K. (2016). Meta-level abduction. IfCoLog Journal of Logics and Their Applications, 3(1), 7–36.

    Google Scholar 

  • Josephson, J. R., & Josephson, S. G. (1996). Abductive Inference: Computation, Philosophy, Technology. Cambridge University Press.

    MATH  Google Scholar 

  • Kakas, A. C., Kowalski, R. A., & Toni, F. (1998). The role of abduction in logic programming. In D. Gabbay, C. Hogger, & J. Robinson (Eds.), Handbook of Logic in Artificial Intelligence and Logic Programming (Vol. 5, pp. 235–324). Oxford University Press.

    Google Scholar 

  • Muggleton, S. (1991). Inductive logic programming. New Generation Computing, 8(4), 295–318.

    Article  MATH  Google Scholar 

  • Nabeshima, H., Iwanuma, K., Inoue, K., & Ray, O. (2010). Solar: An automated deduction system for consequence finding. AI Communications, 23(2–3), 183–203.

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen, T. Q., Inoue, K., & Sakama, C. (2021). Linear algebraic computation of propositional horn abduction. In 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI) (pp. 240–247). IEEE.

    Google Scholar 

  • Nguyen, T. Q., Inoue, K., & Sakama, C. (2022). Enhancing linear algebraic computation of logic programs using sparse representation. New Generation Computing, 40(1), 225–254. A shorter version is in: EPTCS online proceedings of ICLP (Vol. 325, pp. 192–205) (2020)

    Google Scholar 

  • Paul, G. (2000). AI approaches to abduction. In D. M. Gabbay, & R. Kruse (Eds.), Handbook of Defeasible Reasoning and Uncertainty Management Systems (Vol. 4, pp. 35–98). Springer.

    Google Scholar 

  • Reiter, R. (1987). A theory of diagnosis from first principles. Artificial Intelligence, 32(1), 57–95.

    Article  MathSciNet  MATH  Google Scholar 

  • Rocktäschel, T., Bošnjak, M., Singh, S., & Riedel, S. (2014). Low-dimensional embeddings of logic. In Proceedings of the ACL 2014 Workshop on Semantic Parsing (pp. 45–49).

    Google Scholar 

  • Rocktäschel, T., & Riedel, S. (2017). End-to-end differentiable proving. In Neural Information Processing Systems 2017 (pp. 3788–3800).

    Google Scholar 

  • Saikko, P., Wallner, J. P., & Järvisalo, M. (2016). Implicit hitting set algorithms for reasoning beyond NP. In KR (pp. 104–113).

    Google Scholar 

  • Sakama, C., Inoue, K., & Sato, T. (2017). Linear algebraic characterization of logic programs. In International Conference on Knowledge Science, Engineering and Management (pp. 520–533). Springer.

    Google Scholar 

  • Sakama, C., Inoue, K., & Sato, T. (2021). Logic programming in tensor spaces. Annals of Mathematics and Artificial Intelligence, 89(12), 1133–1153.

    Article  MathSciNet  MATH  Google Scholar 

  • Sato, T. (2017). Embedding tarskian semantics in vector spaces. In Workshops at the Thirty-First AAAI Conference on Artificial Intelligence.

    Google Scholar 

  • Sato, T., Inoue, K., & Sakama, C. (2018). Abducing relations in continuous spaces. In IJCAI: Proceedings of the Conference (pp. 1956–1962).

    Google Scholar 

  • Schüller, P. (2016). Modeling variations of first-order horn abduction in answer set programming. Fundamenta Informaticae, 149(1–2), 159–207.

    Article  MathSciNet  MATH  Google Scholar 

  • Selman, B., & Levesque, H. J. (1990). Abductive and default reasoning: A computational core. In AAAI (pp. 343–348).

    Google Scholar 

  • Shakerin, F., & Gupta, G. (2020). White-box induction from SVM models: Explainable AI with logic programming. Theory and Practice of Logic Programming, 20(5), 656–670.

    Article  MathSciNet  MATH  Google Scholar 

  • van Emden, M. H., & Kowalski, R. A. (1976). The semantics of predicate logic as a programming language. Journal of the ACM, 23(4), 733–742.

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, B., Yih, W., He, X., Gao, J., & Deng, L. (2015). Embedding entities and relations for learning and inference in knowledge bases. In 3rd International Conference on Learning Representations, ICLR 2015, Conference Track Proceedings

    Google Scholar 

Download references

Acknowledgements

This work has been supported by JSPS KAKENHI Grant Numbers JP18H03288 and JP21H04905, and by JST CREST Grant Number JPMJCR22D3, Japan.

Tuan Nguyen Quoc has also been supported by Monbukagakusho (MEXT) Scholarship and Japan International Cooperative Agency “Innovative Asia”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsumi Inoue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nguyen, T.Q., Inoue, K., Sakama, C. (2023). Abductive Logic Programming and Linear Algebraic Computation. In: Magnani, L. (eds) Handbook of Abductive Cognition. Springer, Cham. https://doi.org/10.1007/978-3-031-10135-9_62

Download citation

Publish with us

Policies and ethics