Skip to main content

Introduction: Artificial Intelligence (AI) Systems for Oncology

  • Chapter
  • First Online:
Artificial Intelligence in PET/CT Oncologic Imaging

Abstract

Artificial intelligence has demonstrated the capacity to improve different fields with some available applications. Oncology is no exception, and several studies have shown the potential of artificial intelligence systems applied in this domain. A brief introduction to artificial intelligence diving into its applications in oncological imaging and challenges that hinder its use in clinical practice are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chua I, Yablowitz M, Korach Z, Kehl K, Levitan N, Arriaga Y, Jackson G, Bates D, Hassett M. Artificial intelligence in oncology: path to implementation. Cancer Med. 2021;10:4138–49.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Krizhevsky A, Sutskever I, Hinton G. Imagenet classification with deep convolutional neural networks. Adv Neural Inf Proces Syst. 2012;25:1097–105.

    Google Scholar 

  3. Bar Y, Diamant I, Wolf L, Lieberman S, Konen E, Greenspan H. Chest pathology detection using deep learning with non-medical training. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI); 2015. p. 294–7.

    Google Scholar 

  4. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention; 2015. p. 234–41.

    Google Scholar 

  5. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, Van Stiphout R, Granton P, Zegers C, Gillies R, Boellard R, Dekker A, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48:441–6.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gillies R, Kinahan P, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278:563–77.

    PubMed  Google Scholar 

  7. Dos Santos D, Dietzel M, Baessler B. A decade of radiomics research: are images really data or just patterns in the noise? Eur Radiol. 2020;31:1–4.

    Article  Google Scholar 

  8. Papanikolaou N, Santinha J. An introduction to radiomics: capturing tumour biology in space and time. Hellenic J Radiol. 2018;3.

    Google Scholar 

  9. Zhou Q, Chen Z, Cao Y, Peng S. Clinical impact and quality of randomized controlled trials involving interventions evaluating artificial intelligence prediction tools: a systematic review. NPJ Digit Med. 2021;4:154.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gong K, Guan J, Kim K, Zhang X, Yang J, Seo Y, El Fakhri G, Qi J, Li Q. Iterative PET image reconstruction using convolutional neural network representation. IEEE Trans Med Imaging. 2018;38:675–85.

    Article  PubMed Central  Google Scholar 

  11. Chaudhari A, Mittra E, Davidzon G, Gulaka P, Gandhi H, Brown A, Zhang T, Srinivas S, Gong E, Zaharchuk G. Low-count whole-body PET with deep learning in a multicenter and externally validated study. NPJ Digit Med. 2021;4:1–11.

    Google Scholar 

  12. Feng T, Yao S, Xi C, Zhao Y, Wang R, Wu S, Li C, Xu B. Deep learning-based image reconstruction for TOFPET with DIRECT data partitioning format. Phys Med Biol. 2021;66:165007.

    Article  Google Scholar 

  13. Sanaat A, Shiri I, Arabi H, Mainta I, Nkoulou R, Zaidi H. Deep learning-assisted ultra-fast/low-dose whole-body PET/CT imaging. Eur J Nucl Med Mol Imaging. 2021;48:2405–15.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Arabi H, Zaidi H. Deep learning–based metal artefact reduction in PET/CT imaging. Eur Radiol. 2021;31(8):6384–96.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Medical S. Subtle PET. https://subtlemedical.com/subtlepet/. Accessed 21 Dec 2021.

  16. Healthineers S. Oncofreeze AI. https://www.siemens-healthineers.com/molecularimaging/options-and-upgrades/software-applications/oncofreeze. Accessed 21 Dec 2021.

  17. Edenbrandt L, Borrelli P, Ulen J, Enqvist O, Tragardh E. Automated analysis of PSMA-PET/CT studies using convolutional neural networks. MedRxiv. 2021.

    Google Scholar 

  18. Zhao X, Li L, Lu W, Tan S. Tumor co-segmentation in PET/CT using multi-modality fully convolutional neural network. Phys Med Biol. 2018;64:015011.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Moe Y, Groendahl A, Mulstad M, Tomic O, Indahl U, Dale E, Malinen E, Futsaether C. Deep learning for automatic tumour segmentation in PET/CT images of patients with head and neck cancers. ArXiv Preprint ArXiv:1908.00841. 2019.

    Google Scholar 

  20. Kawauchi K, Furuya S, Hirata K, Katoh C, Manabe O, Kobayashi K, Watanabe S, Shiga T. A convolutional neural network-based system to classify patients using FDG PET/CT examinations. BMC Cancer. 2020;20:1–10.

    Article  Google Scholar 

  21. Peng H, Dong D, Fang M, Li L, Tang L, Chen L, Li W, Mao Y, Fan W, Liu L, et al. Prognostic value of deep learning PET/CT-based radiomics: potential role for future individual induction chemotherapy in advanced nasopharyngeal carcinoma. Clin Cancer Res. 2019;25:4271–9.

    Article  CAS  PubMed  Google Scholar 

  22. Polymeri E, Sadik M, Kaboteh R, Borrelli P, Enqvist O, Ulén J, Ohlsson M, Trägardh E, Poulsen M, Simonsen J, et al. Deep learning-based quantification of PET/CT prostate gland uptake: association with overall survival. Clin Physiol Funct Imaging. 2020;40:106–13.

    Article  CAS  PubMed  Google Scholar 

  23. Borrelli P, Larsson M, Ulén J, Enqvist O, Träg E, Poulsen M, Mortensen M, Kjölhede H, Høilund-Carlsen P, Edenbrandt L. Artificial intelligence-based detection of lymph node metastases by PET/CT predicts prostate cancer-specific survival. Clin Physiol Funct Imaging. 2021;41:62–7.

    Article  CAS  PubMed  Google Scholar 

  24. Sibille L, Seifert R, Avramovic N, Vehren T, Spottiswoode B, Zuehlsdorff S, Schafers M. 18F-FDG PET/CT uptake classification in lymphoma and lung cancer by using deep convolutional neural networks. Radiology. 2020;294:445–52.

    Article  PubMed  Google Scholar 

  25. Borrelli P, Ly J, Kaboteh R, Ulén J, Enqvist O, Träg E, Edenbrandt L. AI-based detection of lung lesions in [18 F] FDG PET-CT from lung cancer patients. EJNMMI Phys. 2021;8:1–11.

    Article  Google Scholar 

  26. Fan X, Zhang H, Yin Y, Zhang J, Yang M, Qin S, Zhang X, Yu F. Texture analysis of 18F-FDG PET/CT for differential diagnosis spinal metastases. Front Med. 2021;7:605746.

    Article  Google Scholar 

  27. Satoh Y, Hirata K, Tamada D, Funayama S, Onishi H. Texture analysis in the diagnosis of primary breast cancer: comparison of high-resolution dedicated breast positron emission tomography (dbPET) and whole-body PET/CT. Front Med. 2020;7:603303.

    Article  Google Scholar 

  28. Zheng K, Wang X, Jiang C, Tang Y, Fang Z, Hou J, Zhu Z, Hu S. Pre-operative prediction of mediastinal node metastasis using Radiomics model based on 18F-FDG PET/CTof the primary tumorin non-small cell lung cancer patients. Front Med. 2021;8:673876.

    Article  Google Scholar 

  29. Pierson E, Cutler D, Leskovec J, Mullainathan S, Obermeyer Z. An algorithmic approach to reducing unexplained pain disparities in underserved populations. Nat Med. 2021;27:136–40.

    Article  CAS  PubMed  Google Scholar 

  30. Mali S, Ibrahim A, Woodruff H, Andrearczyk V, Müller H, Primakov S, Salahuddin Z, Chatterjee A, Lambin P. Making radiomics more reproducible across scanner and imaging protocol variations: a review of harmonization methods. J Pers Med. 2021;11:842.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Boellaard R, Delgado-Bolton R, Oyen W, Giammarile F, Tatsch K, Eschner W, Verzijlbergen F, Barrington S, Pike L, Weber W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–54.

    Article  CAS  PubMed  Google Scholar 

  32. Sullivan D, Obuchowski N, Kessler L, Raunig D, Gatsonis C, Huang E, Kondratovich M, McShane L, Reeves A, Barboriak D, et al. Metrology standards for quantitative imaging biomarkers. Radiology. 2015;277:813–25.

    Article  PubMed  Google Scholar 

  33. Zwanenburg A, Leger S, Vallières M, Löck S. Image biomarker standardisation initiative. ArXiv Preprint. 2016.

    Google Scholar 

  34. Lee H, Huang C, Yune S, Tajmir S, Kim M, Do S. Machine friendly machine learning: interpretation of computed tomography without image reconstruction. Sci Rep. 2019;9:1–9.

    Google Scholar 

  35. Islam J, Zhang Y. GAN-based synthetic brain PET image generation. Brain Inform. 2020;7:1–12.

    Article  CAS  Google Scholar 

  36. Yang S, Kim E, Ye J. Continuous conversion of CT Kernel using switchable CycleGAN with AdaIN. In: IEEE transactions on medical imaging. Piscataway, NJ: IEEE; 2021.

    Google Scholar 

  37. Zhu J, Park T, Isola P, Efros A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision; 2017. p. 2223.

    Google Scholar 

  38. Nyúl L, Udupa J. On standardizing the MR image intensity scale. Magn Reson Med. 1999;42:1072–81.

    Article  PubMed  Google Scholar 

  39. Bianchini L, Santinha J, Loução N, Figueiredo M, Botta F, Origgi D, Cremonesi M, Cassano E, Papanikolaou N. A multicenter study on radiomic features from T2-weighted images of a customized MR pelvic phantom setting the basis for robust radiomic models in clinics. Magn Reson Med. 2020;85:1713–26.

    Article  PubMed  Google Scholar 

  40. Shiri I, Rahmim A, Ghaffarian P, Geramifar P, Abdollahi H, Bitarafan-Rajabi A. The impact of image reconstruction settings on 18F-FDG PET radiomic features: multi-scanner phantom and patient studies. Eur Radiol. 2017;27:4498–509.

    Article  PubMed  Google Scholar 

  41. Ibrahim A, Primakov S, Beuque M, Woodruff H, Halilaj I, Wu G, Refaee T, Granzier R, Widaatalla Y, Hustinx R. Radiomicsforprecisionmedicine: currentchallenges, future prospects, and the proposal of a new framework. Methods. 2021;188:20–9.

    Article  CAS  PubMed  Google Scholar 

  42. Collins G, Dhiman P, Navarro C, Ma J, Hooft L, Reitsma J, Logullo P, Beam A, Peng L, Van Calster B, et al. Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open. 2021;11:e048008.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rivera S, Liu X, Chan A, Denniston A, Calvert M. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension. Lancet Digit Health. 2020;2(10):e549–60.

    Article  PubMed Central  Google Scholar 

  44. Liu X, Rivera S, Moher D, Calvert M, Denniston A. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. BMJ. 2020;370:m3164.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sounderajah V, Ashrafian H, Golub R, Shetty S, De Fauw J, Hooft L, Moons K, Collins G, Moher D, Bossuyt P, et al. Developing a reporting guideline for artificial intelligence-centred diagnostic test accuracy studies: the STARD-AI protocol. BMJ Open. 2021;11:e047709.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Watkinson P, Clifton D, Collins G, Mcculloch P, Morgan L, Group, D. DECIDE-AI: new reporting guidelines to bridge the development-to-implementation gap in clinical artificial intelligence. Nat Med. 2021;27(2):186–7.

    Article  Google Scholar 

  47. Gebru T, Morgenstern J, Vecchione B, Vaughan J, Wallach H, Au H, Crawford K. Datasheets for dlatasets. ArXiv.2021.

    Google Scholar 

  48. Arun N, Gaw N, Singh P, Chang K, Aggarwal M, Chen B, Hoebel K, Gupta S, Patel J, Gidwani M, Adebayo J, Li M, Kalpathy-Cramer J. Assessing the (un)trustworthiness of saliency maps for localizing abnormalities in Medical imaging. Radiol Artif Intell. 2021;3(6):e200267.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ghassemi M, Oakden-Rayner L, Beam A. The false hope of current approaches to explainable artificial intelligence in health care. Lancet Digit Health. 2021;3:e745–50.

    Article  PubMed  Google Scholar 

  50. Miller K. Should AI models be explainable? That depends. 2021. https://hai.stanford.edu/news/should-ai-models-be-explainable-depends. Accessed 16 Mar 2021.

  51. Genin K. Grote T. Randomized controlled trialsin medical AIA methodological critique. Philosophy Med. 2021;2.

    Google Scholar 

  52. Tomaszewski M, Gillies R. The biological meaning of radiomic features. Radiology. 2021;298:505–16.

    Article  PubMed  Google Scholar 

  53. Lee C, Lee A. Clinical applications of continual learning machine learning. Lancet Digit Health. 2020;2:e279–81.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Papanikolaou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santinha, J., Verde, A.C., Papanikolaou, N. (2022). Introduction: Artificial Intelligence (AI) Systems for Oncology. In: Andreou, J.A., Kosmidis, P.A., Gouliamos, A.D. (eds) Artificial Intelligence in PET/CT Oncologic Imaging. Springer, Cham. https://doi.org/10.1007/978-3-031-10090-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10090-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10089-5

  • Online ISBN: 978-3-031-10090-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics