Skip to main content

Identification of Low-Dimensional Nonlinear Dynamics from High-Dimensional Simulated and Real-World Data

  • Conference paper
  • First Online:
CONTROLO 2022 (CONTROLO 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 930))

Included in the following conference series:

Abstract

In this paper, the methods of principal component analysis (PCA) and dynamical component analysis (DyCA) are investigated in the application of sparse identification of nonlinear dynamics (SINDy) on high-dimensional simulated and real-world data. Since SINDy requires low-dimensional data, high-dimensional data has to be reduced in a preprocessing step. This can be done using dimension reduction methods such as PCA or DyCA. SINDy is applied to these low-dimensional signals and the performance is examined with respect to these methods. Investigated datasets consist of the Rössler attractor and measured EEG data of epileptic seizures. The results demonstrate the advantage of DyCA as a preprocessing step to eliminate component noise in data governed by a certain type of differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pearson, K.: On lines and planes of closest fit to a system of points in space, Philosophical Magazine, vol. 2, pp. 559–572 (1901). https://doi.org/10.1080/14786440109462720

  2. Ku, W., Storer, R.H., Georgakis, C.: Disturbance detection and isolation by dynamic principal component analysis. Chemomet. Intell. Lab. Syst. 30(1), 179–196 (1995)

    Article  Google Scholar 

  3. Dong, Y., Qin, S.J.: A novel dynamic PCA algorithm for dynamic data modeling and process monitoring. J. Process Control. 67, 1–11 (2018). https://doi.org/10.1016/j.jprocont.2017.05.002

  4. Li, W., Yue, H., Valle-Cervantes, S., Qin, S.: Recursive PCA for adaptive process monitoring. J. Process Control 10(5), 471–486 (2000)

    Article  Google Scholar 

  5. Narayanamurthy, P., Vaswani, N.: Provable dynamic robust PCA or robust subspace tracking. In: Proceedings IEEE International Symposium on Information Theory, pp. 376–380 (2018)

    Google Scholar 

  6. Seifert, B., Korn, K., Hartmann, S., Uhl, C.: Dynamical component analysis (DYCA): dimensionality reduction for high-dimensional deterministic time-series. In: IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP) (2018). https://doi.org/10.1109/MLSP.2018.8517024

  7. Uhl, C., Kern, M., Warmuth, M., Seifert, B.: Subspace detection and blind source separation of multivariate signals by dynamical component analysis (DyCA). IEEE Open J. Signal Process. 1, 30–241 (2020). https://doi.org/10.1109/OJSP.2020.3038369

  8. Champion, K., Zheng, P., Aravkin, A.Y., Brunton, S.L., Kutz, J.: N, A unified sparse optimization framework to learn parsimonious physics-informed models from data. IEEE Access 8, 169259–169271 (2020)

    Article  Google Scholar 

  9. Brunton, S. L., Proctor, J. L., J-C., Kutz, J. N.: Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. 113(15), 3932–3937 (2016). https://doi.org/10.1073/pnas.1517384113

  10. de Silva, B. M., Champion, K., Quade, M., Loiseau, J-C., Kutz, J. N., Brunton, S. L.: PySINDy: A Python package for the Sparse Identification of Nonlinear Dynamics from Data. arXiv:2004.08424 (2020)

  11. Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57(5), 397–398 (1976)

    Article  Google Scholar 

  12. Seifert, B., Adamski, D., Uhl, C.: Analytic quantification of Shilnikov Chaos in epileptic EEG data. Front. Appl. Math. Statist. 4, 57 (2018). https://doi.org/10.3389/fams.2018.00057

  13. Uhl, C., Seifert, B.: Shilnikov Chaos in epilepsy. In: Meyers, R. (eds.) Encyclopedia of Complexity and Systems Science, pp. 1–9. Springer, Berlin, Heidelberg (2019). https://doi.org/10.1007/978-3-642-27737-5_728-1

  14. Warmuth, M., Romberger, P., Uhl, C., Robust dynamical component analysis via multivariate variational denoising. In: Signal Processing Conference (EUSIPCO) 2021 29th European, pp. 2000–2004, (2021). https://doi.org/10.23919/EUSIPCO54536.2021.9616108

Download references

Acknowledgments

We thank the German Federal Ministry of Education and Research (BMBF, Funding number: 05M20WBA) for financial support and the Epilepsy Centre at the Department of Neurology, Universitätsklinikum Erlangen for providing the EEG data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Paglia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paglia, C., Stiehl, A., Uhl, C. (2022). Identification of Low-Dimensional Nonlinear Dynamics from High-Dimensional Simulated and Real-World Data. In: Brito Palma, L., Neves-Silva, R., Gomes, L. (eds) CONTROLO 2022. CONTROLO 2022. Lecture Notes in Electrical Engineering, vol 930. Springer, Cham. https://doi.org/10.1007/978-3-031-10047-5_18

Download citation

Publish with us

Policies and ethics