Skip to main content

Regional Input-To-State Stabilization of Discrete-Time Systems Under Saturating Actuators

  • Conference paper
  • First Online:
CONTROLO 2022 (CONTROLO 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 930))

Included in the following conference series:

  • 752 Accesses

Abstract

We introduce a new controller design condition formulated in terms of linear matrix inequalities, ensuring the local input-to-state stabilization of discrete-time systems under magnitude and rate saturating actuators. Such a contribution plays a relevant role in practical applications by relaxing design conditions to couple with input-to-state stability and, thus, allowing the Lyapunov function to increase whenever the process is affected by energy-bounded exogenous signals. Moreover, such a controller design requires a local stability approach due to the nonlinear effects of magnitude and rate saturating actuators. An example illustrates the application of the proposed techniques and suggest exploring the convexity of the formulation to handle more general systems such as uncertain and time-varying ones.

Authors thanks the partial support from CEFET-MG and Brazilian Agencies CAPES and CNPq (311208/2019-3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acosta, D.M., Yildiz, Y., Klyde, D.H.: Avoiding pilot-induced oscillations in energy-efficient aircraft designs. In: Samad, T., Annaswamy, A.M., (eds.) The Impact of Control Technology. IEEE CSS (2014)

    Google Scholar 

  2. Baiomy, N., Kikuuwe, R.: An amplitude- and rate-saturated controller for linear plants. Asian J. Control 22(1), 77–91 (2020)

    Article  MathSciNet  Google Scholar 

  3. Bateman, A., Lin, Z.: An analysis and design method for discrete-time linear systems under nested saturation. IEEE TAC 47(8), 1305–1310 (2002)

    MathSciNet  MATH  Google Scholar 

  4. Bateman, A., Lin, Z.: An analysis and design method for linear systems under nested saturation. Syst. Control Lett. 48(1), 41–52 (2003)

    Article  MathSciNet  Google Scholar 

  5. Bender, F.A., Gomes da Silva Jr., J.M.: Output feedback controller design for systems with amplitude and rate control constraints. Asian J. Control 14(5), 1–5 (2012)

    Google Scholar 

  6. Berg, J.M., Hammett, K.D., Schwartz, C.A., Banda, S.S.: An analysis of the destabilizing effect of daisy chained rate-limited actuators. IEEE Trans. Control Syst. Technol. 4(2), 171–176 (1996)

    Article  Google Scholar 

  7. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM SAM, Philadelphia, PA (1994)

    Google Scholar 

  8. Figueiredo, L.S., Lacerda, M.J., Leite, V.J.S.: Design of saturating state feedback control laws for discrete-time linear parameter varying systems through homogeneous polynomial parameter-dependent functions. IJRNC 31(14), 6585–6601 (2021)

    MathSciNet  Google Scholar 

  9. Forni, F., Galeani, S., Zaccarian, L.: Model recovery anti-windup for continuous-time rate and magnitude saturated linear plants. Automatica 48(8), 1502–1513 (2012)

    Article  MathSciNet  Google Scholar 

  10. Galeani, S., Onori, S., Teel, A.R., Zaccarian, L.: A magnitude and rate saturation model and its use in the solution of a static anti-windup problem. Syst. Control Lett. 57(1), 1–9 (2008)

    Article  MathSciNet  Google Scholar 

  11. Gomes da Silva Jr., J.M., Limón, D., Alamo, T., Camacho, E.F.: Output feedback for discrete-time systems with amplitude and rate constrained actuators. In: Tarbouriech, S., Garcia, G., Glattfelder, A.H., (eds.) Advanced Strategies in Control Systems with Input and Output Constraints. LNCIS, vol. 346, pp. 369–396. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-37010-9_13

  12. Gomes da Silva Jr., J.M., Limón, D., Alamo, T., Camacho, E.F.: Dynamic output feedback for discrete-time systems under amplitude and rate actuator constraints. IEEE Trans. Autom. Control 53(10), 2367–2372 (2008)

    Google Scholar 

  13. Gomes da Silva Jr., J.M., Tarbouriech, S.: Antiwindup design with guaranteed regions of stability: an LMI-based approach. IEEE-TAC

    Google Scholar 

  14. Grüne, L., Kellett, C.M.: ISS-Lyapunov functions for discontinuous discrete-time systems. IEEE Trans. Autom. Control 59(11), 3098–3103 (2014)

    Article  MathSciNet  Google Scholar 

  15. Kapila, V., Pan, H., de Queiroz, M.S.: LMI-based control of linear systems with actuator amplitude and rate nonlinearities. In: Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, AZ, USA, pp. 1413–1418 (1999)

    Google Scholar 

  16. Oliveira, L.A.L., Barbosa, M.V.C., Silva, L.F.P., Leite, V.J.S.: Exponential stabilization of LPV systems under magnitude and rate saturating actuators. IEEE Control Syst. Lett. 6, 1418–1423 (2022)

    Article  Google Scholar 

  17. Palmeira, A.H.K., Gomes da Silva Jr., J.M.J., Tarbouriech, S., Ghiggi, I.M.F.: Sampled-data control under magnitude and rate saturating actuators. Int. J. Robust Nonlinear Control 26(15), 3232–3252 (2016)

    Google Scholar 

  18. Pan, H., Kapila, V.: LMI-based control of discrete-time systems with actuator amplitude and rate nonlinearities. In: Proceedings of the 2001 ACC, pp. 4140–4145 (2001)

    Google Scholar 

  19. Sontag, E.D.: Input to state stability: basic concepts and results. In: Nistri, P., Stefani, G., (eds.) Nonlinear and Optimal Control Theory. Lecture Notes in Mathematics. LNM, vol. 1932, pp. 163–220. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77653-6_3

  20. Tarbouriech, S., Garcia, G., Gomes da Silva Jr., J.M., Queinnec, I.: Stability and Stabilization of Linear Systems with Saturating Actuators. Springer, London (2011). https://doi.org/10.1007/978-0-85729-941-3

  21. Tarbouriech, S., Prieur, C., Gomes da Silva Jr., J.M.: Stability analysis and stabilization of systems presenting nested saturations. IEEE Trans. Autom. Control 51(8), 1364–1371 (2006)

    Google Scholar 

  22. Tarbouriech, S., Queinnec, I., Biannic, J.-M., Prieur, C.: Pilot-induced-oscillations alleviation through anti-windup based approach. In: Fasano, G., Pintér, J.D. (eds.) Space Engineering. SOIA, vol. 114, pp. 401–423. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41508-6_15

    Chapter  Google Scholar 

  23. Zhou, B.: Analysis and design of discrete-time linear systems with nested actuator saturations. Syst. Control Lett. 62, 871–879 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valter J. S. Leite .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oliveira, L.A.L., Leite, V.J.S., Silva, L.F.P. (2022). Regional Input-To-State Stabilization of Discrete-Time Systems Under Saturating Actuators. In: Brito Palma, L., Neves-Silva, R., Gomes, L. (eds) CONTROLO 2022. CONTROLO 2022. Lecture Notes in Electrical Engineering, vol 930. Springer, Cham. https://doi.org/10.1007/978-3-031-10047-5_17

Download citation

Publish with us

Policies and ethics