Skip to main content

COVID-19 Features Detection Using Machine Learning Models and Classifiers

  • Chapter
  • First Online:
The Science behind the COVID Pandemic and Healthcare Technology Solutions

Part of the book series: Springer Series on Bio- and Neurosystems ((SSBN,volume 15))

  • 286 Accesses

Abstract

Different machine learning techniques and approaches were implemented to detect the features of COVID-19, from chest X-Ray and CT medical images, as well as to identify them from other similar human-being lungs infection diseases. In this work, Logistic Regression, Neural Networks, Random Forests, Decision Trees, kNN, and CN2 Rule Induction are the machine learning models and classifiers that were utilized to perform such detection and identification. The entire process according to the importance of good parameters selection, and such performance was presented and emphasized at different phases of models analysis and visualization. In our presented method, the achieved classification accuracies were up to 95.5%. Our work was implemented using Orange software, as a visual-based tool, and dedicated for physicians with no experience in machine learning algorithms and programming languages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization. Coronavirus disease (COVID-19) pandemic. WHO.int. https://www.who.int/emergencies/diseases/novel-coronavirus-2019. Accessed 4 May 2021

  2. Marmanis, D., Datcu, M., Esch, T., Stilla, U.: Deep learning earth observation classification using ImageNet pretrained networks. IEEE Geosci. Remote Sens. Lett. 13(1), 105–109 (2015)

    Article  Google Scholar 

  3. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  4. Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D., Bagul, A., Langlotz, C., Shpanskaya, K., Lungren, M.P.: CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning (2017). arXiv preprint arXiv:1711.05225

  5. Ayan, E., Ünver, H.M.: Diagnosis of pneumonia from chest X-ray images using deep learning. In: 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT) pp. 1–5

    Google Scholar 

  6. Stephen, O., Sain, M., Maduh, U.J., Jeong, D.U.: An efficient deep learning approach to Pneumonia classification in healthcare. J. Healthc. Eng. (2019). https://doi.org/10.1155/4180949

    Article  Google Scholar 

  7. Alimadadi, A., Aryal, S., Manandhar, I., Munroe, P.B., Joe, B., Cheng, X.: Artificial intelligence and machine learning to fight COVID-19. Physiol. Genomics 52, 200–202 (2020). https://doi.org/10.1152/00029.2020

    Article  Google Scholar 

  8. Pinter, G., Felde, I., Mosavi, A., Ghamisi, P., Gloaguen, R.: COVID-19 pandemic prediction for Hungary; a hybrid machine learning approach. Mathematics 8(6) (2020). https://doi.org/10.3390/math8060890

  9. Elaziz, M.A., Hosny, K.M., Salah, A., Darwish, M.M., Lu, S., Sahlol, A.T.: New machine learning method for image-based diagnosis of COVID-19. PLOS ONE 15(6) (2020). https://doi.org/10.1371/journal.pone.0235187

  10. Sujath, R., Chatterjee, J.M., Hassanien, A.E.: A machine learning forecasting model for COVID-19 pandemic in India. Stoch. Env. Res. Risk Assess. 34, 959–972 (2020). https://doi.org/10.1007/s00477-020-01827-8

    Article  Google Scholar 

  11. Ardabili, S.F., Mosavi, A., Ghamisi, P., Ferdinand, F., Varkonyi-Koczy, A.R., Reuter, U., Rabczuk, T., Atkinson, P.M.: COVID-19 outbreak prediction with machine learning. Algorithms 13(10) (2020). https://doi.org/10.3390/a13100249

  12. Brinati, D., Campagner, A., Ferrari, D., Locatelli, M., Banfi, G., Cabitza, F.: Detection of COVID-19 infection from routine blood exams with machine learning: a feasibility study. J. Med. Syst. 44(135), 1–12 (2020). https://doi.org/10.1007/s10916-020-01597-4

    Article  Google Scholar 

  13. Cheng, F.Y., Joshi, H., Tandon, P., Freeman, R., Reich, D.L., Mazumdar, M., Kohli-Seth, R., Levin, M., Timsina, P., Kia, A.: Using machine learning to predict ICU transfer in hospitalized COVID-19 patients. J. Clin. Med. 9(6) (2020). https://doi.org/10.3390/jcm9061668

  14. Rustam, F., Reshi, A.A., Mehmood, A., Ullah, S., On, B.W., Aslam, W., Choi, G.S.: COVID-19 future forecasting using supervised machine learning models. IEEE Access 8, 101489–101499 (2020). https://doi.org/10.1109/ACCESS.2020.2997311

    Article  Google Scholar 

  15. Kumar, S.R.: Novel Corona Virus 2019 Dataset V151. Distributed by Kaggle Inc. https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset

  16. Allen Institute for AI: COVID-19 Open Research Dataset Challenge (CORD-19) V92. Distributed by Kaggle Inc. https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge

  17. Orange: University of Ljubljana (2021). Accessed Apr 2021. https://orangedatamining.com

  18. Gärtner, T., Lloyd, J.W., Flach, P.A.: Kernels and distances for structured data. Mach. Learn. 57(3), 205–232 (2004)

    Article  MATH  Google Scholar 

  19. Collins, M., Schapire, R.E., Singer, Y.: Logistic regression, AdaBoost and Bregman distances. Mach. Learn. 48(1), 253–285 (2002)

    Article  MATH  Google Scholar 

  20. Dreiseitl, S., Ohno-Machado, L.: Logistic regression and artificial neural network classification models: a methodology review. J. Biomed. Inform. 35, 352–359 (2002)

    Article  Google Scholar 

  21. Clark, P., Boswell, R.: Rule induction with CN2: some recent improvements. In: Machine Learning—Proceedings of the Fifth European Conference (EWSL-91), pp. 151–163 (1991)

    Google Scholar 

  22. Džeroski, S., Grbovic, J., Walley, W.J., Kompare, B.: Using machine learning techniques in the construction of models. II. Data analysis with rule induction. Ecol. Model. 95(1), 95–111 (1997)

    Article  Google Scholar 

  23. Dietterich, T.G., Kong, E.B.: Machine learning bias, statistical bias, and statistical variance of decision tree algorithms pp. 0–13. Technical report, Dept. of Computer Science, Oregon State University, USA (1995)

    Google Scholar 

  24. Olson, R.S., Moore, J.H.: TPOT: A tree-based pipeline optimization tool for automating machine learning. In: Workshop on Automatic Machine Learning (ICML), pp. 66–74 (2016)

    Google Scholar 

  25. Segal M.R.: Machine learning benchmarks and random forest regression. UCSF: Center for Bioinformatics and Molecular Biostatistics (2004). Retrieved from https://escholarship.org/uc/item/35x3v9t4

  26. Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., Chica-Rivas, M.: Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geol. Rev. 71, 804–818 (2015). https://doi.org/10.1016/j.oregeorev.2015.01.001

    Article  Google Scholar 

  27. Kramer, O.: K-nearest neighbors. In: Dimensionality Reduction with Unsupervised Nearest Neighbors. Intell. Syst. Ref. Libr. 51, 13–23 (2013). https://doi.org/10.1007/978-3-642-38652-7_2

  28. Zhang, Z.: Introduction to machine learning: k-nearest neighbors. Ann. Transl. Med. 4(11) (2016). https://doi.org/10.21037/atm.2016.03.37

  29. Chen, H.: Machine learning for information retrieval: Neural networks, symbolic learning, and genetic algorithms. J. Am. Soc. Inf. Sci. 46(3), 194–216 (1995)

    Article  Google Scholar 

  30. Lampignano, J.P., Kendrick, L.E.: Bontrager’s Handbook of Radiographic Positioning and Techniques, 9th edn. Mosby, USA (2017)

    Google Scholar 

  31. Herring, W.: Learning Radiology: Recognizing the Basics, 4th edn. Elsevier, USA (2019)

    Google Scholar 

  32. Abu-Mostafa, Y.S., Magdon-Ismail, M., Lin, H.T.: Learning From Data: A Short Course. AMLBook, USA (2012)

    Google Scholar 

  33. ACDSee: ACD Systems International Inc. (2020). https://www.acdsee.com

  34. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2818–2826

    Google Scholar 

  35. Deng, X., Liu, Q., Deng, Y., Mahadevan, S.: An improved method to construct basic probability assignment based on the confusion matrix for classification problem. Inf. Sci. 340, 250–261 (2016). https://doi.org/10.1016/j.ins.2016.01.033

    Article  Google Scholar 

  36. Hidayatullah, R.S., Cholifah, W.N., Ambarsari, E.W., Kustian, N., Julaeha, S.: Sieve diagram for data exploration of Instagram usage habit obtained from Indonesia questioner’s sample. J. Phys. 1783(1) (2021). https://doi.org/10.1088/1742-6596/1783/1/012028

  37. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997). https://doi.org/10.1109/34.598228

    Article  Google Scholar 

  38. MacKay, D.: Information Theory, Inference and Learning Algorithms, 1st edn. Cambridge University Press, UK (2003)

    MATH  Google Scholar 

  39. Martínez-Martínez, J.M., Escandell-Montero, P., Soria-Olivas, E., Martín-Guerrero, J.D., Magdalena-Benedito, R., GóMez-Sanchis, J.: Regularized extreme learning machine for regression problems. Neurocomputing 74(17), 3716–3721 (2011). https://doi.org/10.1016/j.neucom.2011.06.013

    Article  Google Scholar 

  40. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  41. Zhang, H., Weng, T.W., Chen, P.Y., Hsieh, C.J., Daniel, L.: Efficient neural network robustness certification with general activation functions (2018). arXiv preprint arXiv:1811.00866

  42. Qian, N.: On the momentum term in gradient descent learning algorithms. Neural Netw. 12(1), 145–151 (1999). https://doi.org/10.1016/S0893-6080(98)00116-6

    Article  Google Scholar 

  43. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017). arXiv preprint arXiv:1412.6980

  44. Powers, D.M.W.: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. 2020, arXiv preprint arXiv:2010.16061

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Al-Bayaty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Bayaty, A., Perkowski, M. (2022). COVID-19 Features Detection Using Machine Learning Models and Classifiers. In: Adibi, S., Rajabifard, A., Shariful Islam, S.M., Ahmadvand, A. (eds) The Science behind the COVID Pandemic and Healthcare Technology Solutions. Springer Series on Bio- and Neurosystems, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-031-10031-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10031-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10030-7

  • Online ISBN: 978-3-031-10031-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics