Skip to main content

Evaluation Protocols for the Optimization of Water Treatment Plants

  • Chapter
  • First Online:
Intelligent Techniques for Efficient Use of Valuable Resources

Abstract

In recent years, water treatment is becoming more important and in the future the number of water treatment plants (WTPs) is destined to increase. However, plants often operate less than optimally from a resource management point of view. This lack of efficiency in WTPs can lead to a drop in pollutants removal yields, an increase in operating costs as well as a waste of resources, in opposition to the concept of circular economy. In this work, a methodological approach useful to identify the critical treatment phases and evaluate the effectiveness of the diverse upgrade interventions has been proposed. Performance indicators useful for the characterization of the WTPs, after a preliminary monitoring phase, are presented. In addition, examples of functionality tests applied to real WTPs are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lu, J.-Y., Wang, X.-M., Liu, H.-Q., Yu, H.-Q., Li, W.-W.: Optimizing operation of municipal wastewater treatment plants in China: the remaining barriers and future implications. Environ. Int. 129, 273–278 (2019). https://doi.org/10.1016/j.envint.2019.05.057

    Article  Google Scholar 

  2. Sorlini, S., Collivignarelli, M.C., Castagnola, F., Crotti, B.M., Raboni, M.: Methodological approach for the optimization of drinking water treatment plants’ operation: a case study. Water Sci. Technol. 71, 597–604 (2015). https://doi.org/10.2166/wst.2014.503

    Article  Google Scholar 

  3. Collivignarelli, M.C., Canato, M., AbbĂ , A., Carnevale Miino, M.: Biosolids: what are the different types of reuse? J. Clean. Prod. 238, 117844 (2019). https://doi.org/10.1016/j.jclepro.2019.117844

    Article  Google Scholar 

  4. Gherghel, A., Teodosiu, C., De Gisi, S.: A review on wastewater sludge valorisation and its challenges in the context of circular economy. J. Clean. Prod. 228, 244–263 (2019). https://doi.org/10.1016/j.jclepro.2019.04.240

    Article  Google Scholar 

  5. Collivignarelli, M.C., Cillari, G., Ricciardi, P., Carnevale Miino, M., Torretta, V., Rada, E.C., AbbĂ , A.: The production of sustainable concrete with the use of alternative aggregates: a review. Sustainability 12, 7903 (2020). https://doi.org/10.3390/su12197903

    Article  Google Scholar 

  6. Collivignarelli, M.C., AbbĂ , A., Frattarola, A., Carnevale Miino, M., Padovani, S., Katsoyiannis, J., Torretta, V.: Legislation for the reuse of biosolids on agricultural land in Europe: overview. Sustainability 11, 6015 (2019). https://doi.org/10.3390/su11216015

    Article  Google Scholar 

  7. Collivignarelli, M.C., AbbĂ , A., Carnevale Miino, M., Cillari, G., Ricciardi, P.: A review on alternative binders, admixtures and water for the production of sustainable concrete. J. Clean. Prod. 295, 126408 (2021). https://doi.org/10.1016/j.jclepro.2021.126408

    Article  Google Scholar 

  8. EC A European Green Deal—striving to be the first climate-neutral continent. https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en

  9. European Union Circular Economy Action Plan

    Google Scholar 

  10. Regmi, P., Stewart, H., Amerlinck, Y., Arnell, M., García, P.J., Johnson, B., Maere, T., Miletić, I., Miller, M., Rieger, L., Samstag, R., Santoro, D., Schraa, O., Snowling, S., Takács, I., Torfs, E., van Loosdrecht, M.C.M., Vanrolleghem, P.A., Villez, K., Volcke, E.I.P., Weijers, S., Grau, P., Jimenez, J., Rosso, D.: The future of WRRF modelling—outlook and challenges. Water Sci. Technol. 79, 3–14 (2019). https://doi.org/10.2166/wst.2018.498

    Article  Google Scholar 

  11. Coats, E.R., Wilson, P.I.: Toward nucleating the concept of the water resource recovery facility (WRRF): perspective from the principal actors. Environ. Sci. Technol. 51, 4158–4164 (2017). https://doi.org/10.1021/acs.est.7b00363

    Article  Google Scholar 

  12. Seco, A., Aparicio, S., González-Camejo, J., Jiménez-Benítez, A., Mateo, O., Mora, J.F., Noriega-Hevia, G., Sanchis-Perucho, P., Serna-García, R., Zamorano-López, N., Giménez, J.B., Ruiz-Martínez, A., Aguado, D., Barat, R., Borrás, L., Bouzas, A., Martí, N., Pachés, M., Ribes, J., Robles, A., Ruano, M.V., Serralta, J., Ferrer, J.: Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF). Water Sci. Technol. 78, 1925–1936 (2018). https://doi.org/10.2166/wst.2018.492

    Article  Google Scholar 

  13. Forouzanmehr, F., Le, Q.H., Solon, K., Maisonnave, V., Daniel, O., Buffiere, P., Gillot, S., Volcke, E.I.P.: Plant-wide investigation of sulfur flows in a water resource recovery facility (WRRF). Sci. Total Environ. 801, 149530 (2021). https://doi.org/10.1016/j.scitotenv.2021.149530

    Article  Google Scholar 

  14. Farhaoui, M., Derraz, M.: Review on optimization of drinking water treatment process. J. Water Resour. Prot. 08, 777–786 (2016). https://doi.org/10.4236/jwarp.2016.88063

    Article  Google Scholar 

  15. Collivignarelli, M.C., Todeschini, S., Abbà, A., Ricciardi, P., Carnevale Miino, M., Torretta, V., Rada, E.C., Conti, F., Cillari, G., Calatroni, S., Lumia, G., Bertanza, G.: The performance evaluation of wastewater service: a protocol based on performance indicators applied to sewer systems and wastewater treatment plants. Environ. Technol. 1–18 (2021). https://doi.org/10.1080/09593330.2021.1922509

  16. Sabia, G., Petta, L., Avolio, F., Caporossi, E.: Energy saving in wastewater treatment plants: a methodology based on common key performance indicators for the evaluation of plant energy performance, classification and benchmarking. Energy Convers. Manag. 220, 113067 (2020). https://doi.org/10.1016/j.enconman.2020.113067

    Article  Google Scholar 

  17. Silva, C., Rosa, M.J.: Performance assessment of 23 wastewater treatment plants—a case study. Urban Water J. 17, 78–85 (2020). https://doi.org/10.1080/1573062X.2020.1734634

    Article  Google Scholar 

  18. Collivignarelli, M.C., AbbĂ , A., Bertanza, G., Damiani, S., Raboni, M.: Resilience of a combined chemical-physical and biological wastewater treatment facility. J. Environ. Eng. 145, 05019002 (2019). https://doi.org/10.1061/(ASCE)EE.1943-7870.0001543

    Article  Google Scholar 

  19. Collivignarelli, M.C., Carnevale Miino, M., Manenti, S., Todeschini, S., Sperone, E., Cavallo, G., Abbà, A.: Identification and localization of hydrodynamic anomalies in a real wastewater treatment plant by an integrated approach: RTD-CFD analysis. Environ. Process. 7, 563–578 (2020). https://doi.org/10.1007/s40710-020-00437-4

    Article  Google Scholar 

  20. Government of Italy Legislative Decree 3 April 2006, n. 152. Environmental regulations (in Italian)

    Google Scholar 

  21. LR Regional Regulation 29 March 2019, n. 6.—Discipline and administrative regimes of discharges of domestic wastewater and urban wastewater, regulation of the controls of discharges and the methods of approval of projects for urban wastewater treatment plants, in implementation of Article 52, paragraphs 1, letters a) ef bis), and 3, as well as article 55, paragraph 20, of the regional law 12 December 2003, n. 26 (Discipline of local services of general economic interest. Rules on waste management, energy, use of the subsoil and water resources) (in Italian); Milan, Italy, 2019; p BURL n. 14 suppl

    Google Scholar 

  22. Sánchez, F., Viedma, A., Kaiser, A.S.: Hydraulic characterization of an activated sludge reactor with recycling system by tracer experiment and analytical models. Water Res. 101, 382–392 (2016). https://doi.org/10.1016/j.watres.2016.05.094

    Article  Google Scholar 

  23. Sarkar, M., Sangal, V.K., Bhunia, H.: Hydrodynamics and parametric study of an activated sludge process using residence time distribution technique. Environ. Eng. Res. 25, 400–408 (2019). https://doi.org/10.4491/eer.2019.114

    Article  Google Scholar 

  24. Manenti, S., Todeschini, S., Collivignarelli, M.C., Abbà, A.: Integrated RTD—CFD hydrodynamic analysis for performance assessment of activated sludge reactors. Environ. Process. 5, 23–42 (2018). https://doi.org/10.1007/s40710-018-0288-5

    Article  Google Scholar 

  25. Raboni, M., Gavasci, R., Viotti, P.: Influence of denitrification reactor retention time distribution (RTD) on dissolved oxygen control and nitrogen removal efficiency. Water Sci. Technol. 72, 45–51 (2015). https://doi.org/10.2166/wst.2015.188

    Article  Google Scholar 

  26. Collivignarelli, M.C., Bertanza, G., Abbà, A., Damiani, S.: Troubleshooting in a full-scale wastewater treatment plant: what can be learnt from tracer tests. Int. J. Environ. Sci. Technol. 16, 3455–3466 (2019). https://doi.org/10.1007/s13762-018-2032-0

    Article  Google Scholar 

  27. Aral, M.M., Demirel, E.: Novel slot-baffle design to improve mixing efficiency and reduce cost of disinfection in drinking water treatment. J. Environ. Eng. 143, 06017006 (2017). https://doi.org/10.1061/(ASCE)EE.1943-7870.0001266

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Cristina Collivignarelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Collivignarelli, M.C., AbbĂ , A., Carnevale Miino, M., Caccamo, F.M., Calatroni, S., Bertanza, G. (2022). Evaluation Protocols for the Optimization of Water Treatment Plants. In: Ivascu, L., Cioca, LI., Filip, F.G. (eds) Intelligent Techniques for Efficient Use of Valuable Resources. Intelligent Systems Reference Library, vol 227. Springer, Cham. https://doi.org/10.1007/978-3-031-09928-1_9

Download citation

Publish with us

Policies and ethics