Skip to main content

Acid Retardation Method and Its New Variants for the Separation of Components of Complex Solutions

  • Chapter
  • First Online:
Advances in Geochemistry, Analytical Chemistry, and Planetary Sciences

Abstract

The method of Acid Retardation for processing concentrated multicomponent solutions with separation of salts and acids in nanoporous sorption materials is described. A sieve-type separation mechanism is proposed. In the phase of a sorption material with a low dielectric constant, concentrated acids form molecules or weakly hydrated ion pairs of small size, which easily penetrate into nanopores and are retained there due to the forces of molecular sorption. Salts, which form more hydrated and weakly bound ion pairs, pass through the porous medium without retardation. Standard cyclic AR- processes are applicable only when the salts separated from the acid are readily soluble. In real multicomponent solutions of sulfate or phosphate type, containing iron, alkaline earth metals, the standard method is useless. A new version of Acid Retardation method relevant for chemical technology, is proposed. This variant is based on the regularities of stabilization of supersaturated solutions and colloidal systems in highly porous media. A distinctive feature of the proposed option is the use of diluted acidic solutions instead of water at the stages of concentrated acid displacement in each cycle of the AR-process. The examples of processing industrial solutions with simultaneous recovery of pure acids and isolation of valuable components are presented. Another variant of AR method in which the separation is carried out in a sorption column with two immiscible liquid phases is also proposed. The modified AR-processes are promising for using in chemical engineering and sample preparing for chemical analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hatch, M.J., Dillon, J.A.: Acid retardation. A simple physical method of separation of strong acids from their salts. I&EC Process Design Dev. 2(4), 253–263 (1963)

    Google Scholar 

  2. Gotzelmann, W., Hartinger, L., Gulbass, M.: Stofftrennung und Stoffruckgewinnung mit dem Retardation-Verfaren, Teil.1. Metalloberflache 41(5), 208–212 (1987)

    Google Scholar 

  3. Brown, C.J.: Fluid treatment method and apparatus. Patent No. 4673507, US (1987)

    Google Scholar 

  4. Ferapontov, N.B., Gorshkov, V.I., Trobov, K.T., Parbuzina, L.R., Gavlina, O.T., Strusovskaya, N.L.: Reagent-free separation of electrolytes on ion exchangers. Russ. J. Phys. Chem. A 70(5), 840–843 (1996)

    Google Scholar 

  5. Ferapontov, N.B., Gorshkov, V.I., Trobov, K.T., Parbuzina, L.P., Gavlina, O.T., Strusovskaya, N.L.: Sorption properties of high-basicity anionites at equilibrium with solutions of electrolytes. Russ. J. Phys. Chem. A 70(12), 2072–2077 (1996)

    Google Scholar 

  6. Ferapontov, N.B., Gorshkov, V.I., Parbuzina, L.R., Trobov, H.T., Strusovskaya, N.L.: Heterophase model of swollen cross-linked polyelectrolyte. React. Funct. Polym. 41(1), 213–225 (1999)

    Article  Google Scholar 

  7. Ferapontov, N.B., Parbuzina, L.R., Gorshkov, V.I., Strusovskaya, N.L., Gagarin, A.N.: Interaction of cross-linked polyelectrolytes with solutions of low-molecular-weight electrolytes. React. Funct. Polym. 45(2), 145–153 (2000)

    Article  Google Scholar 

  8. Gruzdeva, A.N., Gorshkov, V.I., Gagarin, A.N., Ferapontov, N.B.: Separation of electrolytes by sorption on crosslinked poly(vinyl alcohol). Russ. J. Phys. Chem. A 79(7), 1150–1152 (2005)

    Google Scholar 

  9. Ferapontov, N.B., Gorshkov, V.I., Parbuzina, L.R., Strusovskaya, N.L., Gagarin, A.N.: Thermodynamics of interphase equilibrium in system ion exchanger-solution of low molecular weight electrolyte. React. Funct. Polym. 66(12), 1749–1756 (2006)

    Article  Google Scholar 

  10. Gorshkov, V.I., Ferapontov, N.B.: Separation of strong electrolyte mixtures by sorption on ion exchangers and the determination of a single-step separation factor. Russ. J. Phys. Chem. A 81(8), 1314–1319 (2007)

    Article  Google Scholar 

  11. Tsyurupa, M.P., Tarabaeva, O.G., Pastukhov, A.V., Davankov, V.A.: Sorption of ions of heavy metals by neutral hypercrosslinked polystyrene. Int. J. Polym. Mater. 52(5), 403–414 (2003)

    Article  Google Scholar 

  12. Davankov, V.A., Tsyurupa, M.P., Alexienko, N.N.: Selectivity in preparative separations of inorganic electrolytes by size-exclusion chromatography on hypercrosslinked polystyrene and microporous carbons. J. Chromatogr. A 1100(1), 32–39 (2005)

    Article  Google Scholar 

  13. Davankov, V., Tsyurupa, M.: Chromatographic resolution of a salt into its parent acid and base constituents. J. Chromatogr. A 1136(1), 118–122 (2006)

    Article  Google Scholar 

  14. Laatikainen, M., Sainio, T., Paatero, E., Davankov, V., Tsyurupa, M., Blinnikova, Z.: Modeling of size-exclusion chromatography of electrolytes on non-ionic nanoporous adsorbents. J. Chromatogr. A 1149(2), 245–253 (2007)

    Article  Google Scholar 

  15. Laatikainen, M., Sainio, T., Paatero, E., Davankov, V., Tsyurupa, M., Blinnikova, Z.: Chromatographic separation of a concentrated HCL-CaCL2 solution on non-ionic hypercrosslinked polystyrene. Reactive Functional Polym. 67(12), 1589–1598 (2007)

    Google Scholar 

  16. Davankov, V.A., Tsyurupa, M.P., Blinnikova, Z.K.: Separation of a CaCl2-HCl model mixture on neutral nanoporous hypercrosslinked polystyrene under static and dynamic conditions. Russ. J. Phys. Chem. A 82(3), 434–438 (2008)

    Article  Google Scholar 

  17. Pastukhov, A.V., Davankov, V.A., Tsyurupa, M.P., Blinnikova, Z.K., Kavalerskaya, N.E.: The contraction of granules of nanoporous super-cross-linked polystyrene sorbents as a result of the exclusion of large-sized mineral electrolyte ions from the polymer phase. Russ. J. Phys. Chem. A 83(3), 457–464 (2009)

    Article  Google Scholar 

  18. Blinnikova, Z.K., Maerle, K.V., Tsyurupa, M.P., Davankov, V.A.: Pecularities of the separation of mineral salts by means of size exclusion chromatography on the neutral nanoporous polystyrene sorbents. Sorbtsionnye I Chromatograficheskie Pprocessy 9(3), 323–331 (2009). (in Russian)

    Google Scholar 

  19. Davankov, V., Tsyurupa, M., Blinnikova, Z., Pavlova, L.: Self-concentration effects in preparative SEC of mineral electrolytes using nanoporous neutral polymeric sorbents. J. Sep. Sci. 32(1), 64–73 (2009)

    Article  Google Scholar 

  20. Tsyurupa, M.P., Blinnikova, Z.K., Davankov, V.A.: Size exclusion chromatography of mineral electrolytes on neutral nanoporous hypercrosslinked polystyrene: mechanism of acid retardation, salt retardation, base retardation. Sorbtsionnye I Chromatograficheskie Processy 13(5), 541–552 (2013). (in Russian)

    Google Scholar 

  21. Krachak, A.N., Khamizov, R.K., Poznukhova, V.A., Podgornaya, E.B., Durnaykin, V.A.: Basic regularities of electrolyte separation in the method of acid retardation. I. Influence of cation type on the sorption of acids and their salts from binary solutions. Sorbtsionnye I Chromatograficheskie Processy 11(1), 77–88 (2011). (in Russian)

    Google Scholar 

  22. Krachak, A.N., Khamizov, R.K., Dolgonosov, A.M., Malkova, L.M.: Basic regularities of electrolyte separation in the method of Acid Retardation. II. Influence of acid and salt concentration on their sorption from individual solutions. Sorbtsionnye I Chromatograficheskie Processy 14(6) 902–911 (2014). (in Russian)

    Google Scholar 

  23. Sidelnikov, G.B., Tikhonov, N.A., Khamizov, R.K., Krachak, A.N.: Modeling and study of sorption and separation of acids in solution. Math. Models Comput. Simul. 5(6), 501–510 (2013)

    Article  Google Scholar 

  24. Glotova, E.A., Tikhonov, N.A., Khamizov, R.K., Krachak, A.N.: Mathematical modeling of a sorption process for the retention of acid from a solution. Moscow Univ. Phys. Bull. 68(1), 65–70 (2013)

    Google Scholar 

  25. Tikhonov, N.A.: A New approach to calculating activity coefficients in a wide range of electrolyte concentration. Dokl. Math. 82(2), 808–810 (2010)

    Article  Google Scholar 

  26. Tikhonov, N.A., Sidelnikov, G.B.: Quantitative analysis of physical factors that determine the behavior of activity coefficients of electrolytes. J. Math. Chem. 51(10), 2746–2756 (2013)

    Article  Google Scholar 

  27. Tikhonov, N.A., Sidelnikov, G.B.: Modeling of physical effects governing the behavior of the activity coefficients of an electrolyte. Math. Models Comput. Simul. 7(1), 6–12 (2015)

    Article  Google Scholar 

  28. Tikhonov, N.A., Tokmachev, M.G.: Quantitative analysis of physical factors that determine activity coefficients of electrolytes. III. Mixtures of electrolytes. J. Math. Chem. 54(2), 592–601 (2016)

    Google Scholar 

  29. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions. Butterworth and Co, London (1970)

    Google Scholar 

  30. Lyashchenko, A.K., Karataeva, I.M.: The activity of water and permittivity of aqueous solutions of electrolytes. Russ. J. Phys. Chem. A 84(2), 320–328 (2010)

    Article  Google Scholar 

  31. Nikolsky, B.P. (ed.): Chemist’s Handbook in 6 volumes. In: Chemistry, vol. 1, 3. Moscow, Leningrad (1963, 1964)

    Google Scholar 

  32. Khamizov, R.K., Krachak, A.N., Gruzdeva, A.N., Vlasovskikh, N.S., Tikhonov, N.A.: Separation of concentrated acid and salt solutions in nanoporous media as the basis for a new technology of processing of phosphorus-containing raw materials. Geochem. Int. 54(13), 1221–1235 (2016)

    Article  Google Scholar 

  33. Helfferich, F.G.: The theory of precipitation/dissolution waves. AIChE J. 35(1), 75–87 (1989)

    Article  Google Scholar 

  34. Khamizov, R.K., Myasoedov, B.F., Rudenko, B.A., Tikhonov, N.A.: General character of isothermal supersaturation in ion exchange. Doklady Phys. Chem. 356(1–3), 310–314 (1997)

    Google Scholar 

  35. Muraviev, D., Khamizov, R.K., Tikhonov, N.A.: Pecularities of the dynamics of ion exchange in supersaturated solutions and colloid systems. Langmuir 19(26), 10852–10856 (2003)

    Article  Google Scholar 

  36. Muraviev, D.N., Khamizov, R.K.: Ion exchange isothermal supersaturation. Concept, problems and application. Ion Exchange Solvent Extract. Ser. Adv. 16, 119–210 (2004)

    Google Scholar 

  37. Tikhonov, N.A.: On the phenomenon of isothermal supersaturation of solutions at ion exchange in porous media. J. Math. Chem. 57(1), 315–326 (2019)

    Article  Google Scholar 

  38. Vlasovskikh, N.S.,Khamizov, S.K., Khamizov, R.K., Krachak, A.N., Gruzdeva, A.N., Tsikin, M.N.,Dolgov, V.V.: Extraction of impurities: REM and other metals, from phosphoric acid. Sorbtsionnye I Chromatograficheskie Processy 13(5), 605–617 (2013). (in Russian)

    Google Scholar 

  39. Khamizov, R.K., Krachak, A.N., Gruzdeva, A.N., Vlasovskikh, N.S. et al.: Method for extracting rare earth elements from wet phosphoric acid. Patent RF 2544731 (2015)

    Google Scholar 

  40. Khamizov, R.K., Krachak, A.N., Gruzdeva, A.N., Vlasovskikh, N.S. et al.: Method for extracting rare earth elements from wet phosphoric acid. Patent RF 2545337 (2015)

    Google Scholar 

  41. Kaznacheev, M.A., Tikhonov, N.A., Khamizov, R.K.: Influence of impurity components on the precipitation of calcium salts during the purification of phosphoric acid on anionite by the method of acid retardation. Sorbtsionnye I Chromatograficheskie Processy 21(4), 547–554 (2021). (in Russian)

    Google Scholar 

  42. Khamizov, R.K., Vlasovskikh, N.S., Moroshkina, L.P., Krachak, A.N., Gruzdeva, A.N., Khamizov, S.K.: Acid retardation method of separation for closed-circuit processing of alumina-containing raw materials with the use of salt-acid digestion. Sorbtsionnye I Chromatograficheskie Processy 17(6), 877–885 (2017)

    Google Scholar 

  43. Khamizov, R.K., Kogarko, L.N., Vlasovskikh, N.S., Krachak, A.N., Gruzdeva, A.N., Zaitsev, V.A., Moroshkina, L.P.: On the possibility of separation of ammonium bisulfate into sulfate and acid in the cyclic salt-type processing of alumina-containing raw materials. Dokl. Chem. 481(1), 157–159 (2018)

    Article  Google Scholar 

  44. Khamizov, R.K., Zaitsev, V.A., Gruzdeva, A.N., Krachak, A.N., Rarova, I.G., Vlasovskikh, N.S., Moroshkina, L.P.: Feasibility of acid–salt processing of alumina-containing raw materials in a closed-loop process. Russ. J. Appl. Chem. 93(7), 1059–1067 (2020)

    Article  Google Scholar 

  45. Khamizov, R.K., Krachak, A.N., Khamizov, S.K.: Separation of ionic mixtures in sorption columns with two liquid phases. Sorbtsionnye I Chromatograficheskie Processy 14(1), 14–23 (2014)

    Google Scholar 

  46. Khamizov, R.K., Krachak, A.N., Podgornaya, E.B., Khamizov, S.K.: Method of mass transfer process. US Patent 8940175 (2015)

    Google Scholar 

  47. Khamizov, R.K., Krachak, A.N., Gruzdeva, A.N., Khamizov, S.K., Vlasovskikh, N.S.: Separation of concentrated ion mixtures in sorption columns with two liquid phases. Ion Exchange Solvent Extract. Ser. Adv. 22, 147–174 (2016)

    Google Scholar 

  48. Podgornaya, E.B., Burova, O.I., Radilov, A.S., Khamizov, R.K.: Using sorption method of acid retardation in the systems composed of two liquid phases, to address the problems of sample preparation in ICP-MS elemental analysis. Sorbtsionnye I Chromatograficheskie Processy 13(5), 618–622 (2013). (in Russian)

    Google Scholar 

  49. Seregina, I.F., Perevoznik, O.A., Bolshov, M.A.: Acid retardation method in analysis of strongly acidic solutions by inductively coupled plasma mass-spectrometry. Talanta 159, 387–394 (2016)

    Article  Google Scholar 

  50. Khamizov, R.K., Krachak, A.N., Podgornaya, E.B., Gruzdeva, A.N.: Acid retardation effect in sorption columns with two liquid phases: capabilities of application to sample preparation in elemental analysis. J. Analyt. Chem. 74(3), 226–238 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

the authors are grateful to: V. P. Kolotov for his help in organizing the analysis of REE concentrates; G. B. Sidelnikov (Faculty of Physics, Moscow State University) for his help in writing programs and performing calculations; M. N. Tsikin, V. V. Dolgov, V. S. Sushchev and Yu. D. Chernenko, V. V. Sokolov (NIUIF named after V. Ya. Samoilov) for help in organizing and conducting bench tests, S. Kh. Khamizov, A. N. Smirnov and all employees of NewKem Technology LLC and Scientific and Production Enterprise JSC SPE “Radiy” for the creation and provision of a bench-scale installation and for assistance in its testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kh. Khamizov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khamizov, R.K., Krachak, A.N., Vlasovskikh, N.S., Gruzdeva, A.N. (2023). Acid Retardation Method and Its New Variants for the Separation of Components of Complex Solutions. In: Kolotov, V.P., Bezaeva, N.S. (eds) Advances in Geochemistry, Analytical Chemistry, and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-09883-3_30

Download citation

Publish with us

Policies and ethics