Skip to main content

Aerial Robotics for Precision Agriculture: Weeds Detection Through UAV and Machine Vision

  • Chapter
  • First Online:
Optoelectronic Devices in Robotic Systems

Abstract

In this chapter, the authors touch upon the problem of weeds detection. In particular, a real-life problem of Hogweed of Sosnowski (lat. Heracleum) detection using intelligent aerial robotics is considered. Until now, this challenge has not been fully addressed—it requires further research activities for designing a novel monitoring platform with intelligent capabilities on board allowing for the automation of weed detection routine which is currently carried out manually. The detection task imposes several challenges: (i) detection, without human presence, should be carried out in order to prevent the seeds dissemination, (ii) monitoring is required to cover a wide range, and (iii) the location of the data should be accessible and “real time” for fast action of the findings on the data analysis. To address this problem, the authors discuss the following points: relevant unmanned aerial vehicle (UAV) architecture, the corresponding image capture cameras, computer vision methods, and computer vision hardware for UAV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. NNAPI. https://developer.android.com/ndk/guides/neuralnetworks (2019). [Online; accessed 08-May-2021]

  2. TensorFlow Mobile. https://www.tensorflow.org/lite (2019). [Online; accessed 09-May-2021]

  3. Alavi, A.H., Jiao, P., Buttlar, W.G., Lajnef, N.: Internet of Things-enabled smart cities: State-of-the-art and future trends. Measurement 129, 589–606 (2018)

    Article  Google Scholar 

  4. Alexander, C., Moeslund, J.E., Bøcher, P.K., Arge, L., Svenning, J.C.: Airborne laser scanner (lidar) proxies for understory light conditions. Remote Sensing of Environment 134, 152–161 (2013)

    Article  Google Scholar 

  5. Alzantot, M., Wang, Y., Ren, Z., Srivastava, M.B.: RSTensorFlow: GPU enabled TensorFlow for deep learning on commodity android devices. In: Proceedings of the 1st International Workshop on Deep Learning for Mobile Systems and Applications, pp. 7–12. ACM (2017)

    Google Scholar 

  6. Andrew, W., Greatwood, C., Burghardt, T.: Aerial animal biometrics: Individual Friesian cattle recovery and visual identification via an autonomous UAV with onboard deep inference pp. 237–243 (2019)

    Google Scholar 

  7. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  8. Bai, M., Urtasun, R.: Deep watershed transform for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5221–5229 (2017)

    Google Scholar 

  9. Bonetto, M., Korshunov, P., Ramponi, G., Ebrahimi, T.: Privacy in mini-drone based video surveillance. In: 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), vol. 4, pp. 1–6. IEEE (2015)

    Google Scholar 

  10. Burks, T., Shearer, S., Gates, R.S., Donohue, K.: Backpropagation neural network design and evaluation for classifying weed species using color image texture. Transactions of the ASAE 43(4), 1029 (2000)

    Article  Google Scholar 

  11. Candiago, S., Remondino, F., De Giglio, M., Dubbini, M., Gattelli, M.: Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote sensing 7(4), 4026–4047 (2015)

    Article  Google Scholar 

  12. Carrio, A., Sampedro, C., Rodriguez-Ramos, A., Campoy, P.: A review of deep learning methods and applications for unmanned aerial vehicles. Journal of Sensors 2017 (2017)

    Google Scholar 

  13. Chamoso, P., Raveane, W., Parra, V., González, A.: UAVs applied to the counting and monitoring of animals. In: Ambient Intelligence-Software and Applications, pp. 71–80. Springer (2014)

    Google Scholar 

  14. Chaudhury, A., Ward, C., Talasaz, A., Ivanov, A.G., Huner, N.P., Grodzinski, B., Patel, R.V., Barron, J.L.: Computer vision based autonomous robotic system for 3D plant growth measurement. In: 2015 12th Conference on Computer and Robot Vision (CRV), pp. 290–296. IEEE (2015)

    Google Scholar 

  15. Chauhan, J., Seneviratne, S., Hu, Y., Misra, A., Seneviratne, A., Lee, Y.: Breathing-based authentication on resource-constrained IoT devices using recurrent neural networks. Computer 51(5), 60–67 (2018). DOI 10.1109/MC.2018.2381119

    Google Scholar 

  16. Cheng, G.J., Liu, L.T., Qiang, X.J., Liu, Y.: Industry 4.0 development and application of intelligent manufacturing. In: 2016 international conference on information system and artificial intelligence (ISAI), pp. 407–410. IEEE (2016)

    Google Scholar 

  17. Clif, A.: Dataset Over Ohio State University (2007)

    Google Scholar 

  18. Codrescu, L., Anderson, W., Venkumanhanti, S., Zeng, M., Plondke, E., Koob, C., Ingle, A., Tabony, C., Maule, R.: Hexagon DSP: An architecture optimized for mobile multimedia and communications. IEEE Micro 34(2), 34–43 (2014)

    Article  Google Scholar 

  19. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: Object detection via region-based fully convolutional networks. In: Advances in neural information processing systems, pp. 379–387 (2016)

    Google Scholar 

  20. Dhanachandra, N., Manglem, K., Chanu, Y.J.: Image segmentation using k-means clustering algorithm and subtractive clustering algorithm. Procedia Computer Science 54, 764–771 (2015)

    Article  Google Scholar 

  21. Di Cicco, M., Potena, C., Grisetti, G., Pretto, A.: Automatic model based dataset generation for fast and accurate crop and weeds detection. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5188–5195. IEEE (2017)

    Google Scholar 

  22. Dutta, S., Cruz, J.A., Jiao, Y., Chen, J., Kramer, D.M., Osteryoung, K.W.: Non-invasive, whole-plant imaging of chloroplast movement and chlorophyll fluorescence reveals photosynthetic phenotypes independent of chloroplast photorelocation defects in chloroplast division mutants. The Plant Journal 84(2), 428–442 (2015)

    Article  Google Scholar 

  23. Eugster, P., Sundaram, V., Zhang, X.: Debugging the internet of things: The case of wireless sensor networks. IEEE Software (1), 1–1 (2015)

    Google Scholar 

  24. Fan, Y., Lu, X., Li, D., Liu, Y.: Video-based emotion recognition using CNN-RNN and C3D hybrid networks. In: Proceedings of the 18th ACM International Conference on Multimodal Interaction, pp. 445–450. ACM (2016)

    Google Scholar 

  25. Fawakherji, M., Youssef, A., Bloisi, D., Pretto, A., Nardi, D.: Crop and weeds classification for precision agriculture using context-independent pixel-wise segmentation. In: 2019 Third IEEE International Conference on Robotic Computing (IRC), pp. 146–152. IEEE (2019)

    Google Scholar 

  26. Flammini, F., Naddei, R., Pragliola, C., Smarra, G.: Towards automated drone surveillance in railways: State-of-the-art and future directions. In: International Conference on Advanced Concepts for Intelligent Vision Systems, pp. 336–348. Springer (2016)

    Google Scholar 

  27. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 580–587 (2014)

    Google Scholar 

  28. Große-Stoltenberg, A., Hellmann, C., Thiele, J., Werner, C., Oldeland, J.: Early detection of GPP-related regime shifts after plant invasion by integrating imaging spectroscopy with airborne lidar. Remote sensing of environment 209, 780–792 (2018)

    Article  Google Scholar 

  29. Gurghian, A., Koduri, T., Bailur, S.V., Carey, K.J., Murali, V.N.: DeepLanes: End-to-end lane position estimation using deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 38–45 (2016)

    Google Scholar 

  30. Hammad, I., El-Sankary, K.: Impact of approximate multipliers on VGG deep learning network. IEEE Access 6, 60438–60444 (2018)

    Article  Google Scholar 

  31. Haug, S., Michaels, A., Biber, P., Ostermann, J.: Plant classification system for crop/weed discrimination without segmentation. In: IEEE winter conference on applications of computer vision, pp. 1142–1149. IEEE (2014)

    Google Scholar 

  32. He, H.J., Zheng, C., Sun, D.W.: Image segmentation techniques. In: Computer Vision Technology for Food Quality Evaluation, pp. 45–63. Elsevier (2016)

    Google Scholar 

  33. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778 (2016)

    Google Scholar 

  34. Hong, K., Liu, X., Liu, G., Chen, W.: Detection of physical stress using multispectral imaging. Neurocomputing 329, 116–128 (2019)

    Article  Google Scholar 

  35. Humplík, J.F., Lazár, D., Husičková, A., Spíchal, L.: Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses–a review. Plant methods 11(1), 29 (2015)

    Article  Google Scholar 

  36. Ignatov, A., Timofte, R., Chou, W., Wang, K., Wu, M., Hartley, T., Van Gool, L.: AI benchmark: Running deep neural networks on android smartphones. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  37. ISPAG: International society of precision agriculture (2020). URL https://www.ispag.org/

  38. Ivanov, M., Sergyienko, O., Tyrsa, V., Lindner, L., Flores-Fuentes, W., Rodríguez-Quiñonez, J.C., Hernandez, W., Mercorelli, P.: Influence of data clouds fusion from 3D real-time vision system on robotic group dead reckoning in unknown terrain. IEEE/CAA Journal of Automatica Sinica 7(2), 368–385 (2020)

    Article  Google Scholar 

  39. Ivanov, S., Bhargava, K., Donnelly, W.: Precision farming: Sensor analytics. IEEE Intelligent Systems 30(4), 76–80 (2015)

    Article  Google Scholar 

  40. Jiang, H., Sun, D., Jampani, V., Yang, M.H., Learned-Miller, E., Kautz, J.: Super slomo: High quality estimation of multiple intermediate frames for video interpolation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9000–9008 (2018)

    Google Scholar 

  41. Jordan, B.R., et al.: A bird’s-eye view of geology: The use of micro drones/UAVs in geologic fieldwork and education. GSA Today 25(7), 50–52 (2015)

    Article  Google Scholar 

  42. Kamilaris, A., Prenafeta-Boldú, F.X.: Deep learning in agriculture: A survey. Computers and Electronics in Agriculture 147, 70–90 (2018)

    Article  Google Scholar 

  43. Kaup, F., Gottschling, P., Hausheer, D.: PowerPi: Measuring and modeling the power consumption of the Raspberry Pi. In: 39th Annual IEEE Conference on Local Computer Networks, pp. 236–243. IEEE (2014)

    Google Scholar 

  44. Khaled, F., Ondel, O., Allard, B.: Optimal energy harvesting from serially connected microbial fuel cells. IEEE Transactions on Industrial Electronics 62(6), 3508–3515 (2015)

    Google Scholar 

  45. Khan, Z., Rahimi-Eichi, V., Haefele, S., Garnett, T., Miklavcic, S.J.: Estimation of vegetation indices for high-throughput phenotyping of wheat using aerial imaging. Plant methods 14(1), 20 (2018)

    Article  Google Scholar 

  46. Kim, J., Ryu, Y., Jiang, C., Hwang, Y.: Continuous observation of vegetation canopy dynamics using an integrated low-cost, near-surface remote sensing system. Agricultural and forest meteorology 264, 164–177 (2019)

    Article  Google Scholar 

  47. Kitić, G., Tagarakis, A., Cselyuszka, N., Panić, M., Birgermajer, S., Sakulski, D., Matović, J.: A new low-cost portable multispectral optical device for precise plant status assessment. Computers and Electronics in Agriculture 162, 300–308 (2019)

    Article  Google Scholar 

  48. Kodali, R.K., Jain, V., Bose, S., Boppana, L.: IoT based smart security and home automation system. In: International conference on computing, communication and automation (ICCCA), pp. 1286–1289. IEEE (2016)

    Google Scholar 

  49. Kulikov, V., Yurchenko, V., Lempitsky, V.: Instance segmentation by deep coloring. arXiv preprint arXiv:1807.10007 (2018)

    Google Scholar 

  50. Lane, n.d., Bhattacharya, S., Mathur, A., Georgiev, P., Forlivesi, C., Kawsar, F.: Squeezing deep learning into mobile and embedded devices. IEEE Pervasive Computing 16(3), 82–88 (2017)

    Google Scholar 

  51. Lapuschkin, S., Binder, A., Montavon, G., Müller, K., Samek, W.: Analyzing classifiers: Fisher vectors and deep neural networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2912–2920 (2016)

    Google Scholar 

  52. Latifi Oskouei, S.S., Golestani, H., Hashemi, M., Ghiasi, S.: CNNdroid: GPU-accelerated execution of trained deep convolutional neural networks on android. In: Proceedings of the 24th ACM international conference on Multimedia, pp. 1201–1205. ACM (2016)

    Google Scholar 

  53. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural computation 1(4), 541–551 (1989)

    Article  Google Scholar 

  54. Li, Y., Dong, X., Wang, W.: Additive powers-of-two quantization: An efficient non-uniform discretization for neural networks. In: International Conference on Learning Representations (2019)

    Google Scholar 

  55. Lin, G., Milan, A., Shen, C., Reid, I.: RefineNet: Multi-path refinement networks for high-resolution semantic segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5168–5177 (2017)

    Google Scholar 

  56. Lin, M., Ji, R., Wang, Y., Zhang, Y., Zhang, B., Tian, Y., Shao, L.: HRank: Filter pruning using high-rank feature map. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  57. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft coco: Common objects in context. In: European conference on computer vision, pp. 740–755. Springer (2014)

    Google Scholar 

  58. Lindner, L., Sergiyenko, O., Tyrsa, V., Mercorelli, P.: An approach for dynamic triangulation using servomotors. In: IEEE 23rd International Symposium on Industrial Electronics (ISIE), pp. 1926–1931 (2014)

    Google Scholar 

  59. Liu, M.W., Ozdogan, M., Zhu, X.: Crop type classification by simultaneous use of satellite images of different resolutions. IEEE Transactions on geoscience and remote sensing 52(6), 3637–3649 (2013)

    Article  Google Scholar 

  60. Lottes, P., Behley, J., Milioto, A., Stachniss, C.: Fully convolutional networks with sequential information for robust crop and weed detection in precision farming. IEEE Robotics and Automation Letters 3(4), 2870–2877 (2018)

    Article  Google Scholar 

  61. Lottes, P., Hoeferlin, M., Sander, S., Müter, M., Schulze, P., Stachniss, L.C.: An effective classification system for separating sugar beets and weeds for precision farming applications. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 5157–5163. IEEE (2016)

    Google Scholar 

  62. Lottes, P., Khanna, R., Pfeifer, J., Siegwart, R., Stachniss, C.: UAV-based crop and weed classification for smart farming. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3024–3031. IEEE (2017)

    Google Scholar 

  63. Luo, Y., Wong, Y., Kankanhalli, M., Zhao, Q.: \(\mathcal {G}\) -SoftMax: Improving intraclass compactness and interclass separability of features. IEEE Transactions on Neural Networks and Learning Systems 31(2), 685–699 (2020)

    Google Scholar 

  64. Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P.: Can semantic labeling methods generalize to any city? The INRIA aerial image labeling benchmark. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 3226–3229. IEEE (2017)

    Google Scholar 

  65. Marantos, C., Karavalakis, N., Leon, V., Tsoutsouras, V., Pekmestzi, K., Soudris, D.: Efficient support vector machines implementation on Intel/Movidius Myriad 2. In: 2018 7th International Conference on Modern Circuits and Systems Technologies (MOCAST), pp. 1–4. IEEE (2018)

    Google Scholar 

  66. Martinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., Villa, P., Stroppiana, D., Boschetti, M., Goulart, L.R., et al.: Advanced methods of plant disease detection. a review. Agronomy for Sustainable Development 35(1), 1–25 (2015)

    Google Scholar 

  67. Menshchikov, A., Ermilov, D., Dranitsky, I., Kupchenko, L., Panov, M., Fedorov, M., Somov, A.: Data-driven body-machine interface for drone intuitive control through voice and gestures. In: 45th Annual Conference of the IEEE Industrial Electronics Society, vol. 1, pp. 5602–5609 (2019)

    Google Scholar 

  68. Menshchikov, A., Lopatkin, D., Tsykunov, E., Tsetserukou, D., Somov, A.: Realizing body-machine interface for quadrotor control through Kalman filters and recurrent neural network. In: 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 595–602 (2020)

    Google Scholar 

  69. Menshchikov, A., Shadrin, D., Prutyanov, V., Lopatkin, D., Sosnin, S., Tsykunov, E., Iakovlev, E., Somov, A.: Real-time detection of hogweed: UAV platform empowered by deep learning. IEEE Transactions on Computers pp. 1–1 (2021)

    Google Scholar 

  70. Milioto, A., Lottes, P., Stachniss, C.: Real-time semantic segmentation of crop and weed for precision agriculture robots leveraging background knowledge in CNNS. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2229–2235. IEEE (2018)

    Google Scholar 

  71. Minakov, I., Passerone, R.: PASES: An energy-aware design space exploration framework for wireless sensor networks. Journal of Systems Architecture 59(8), 626 – 642 (2013)

    Article  Google Scholar 

  72. Misbahuddin, S., Zubairi, J.A., Saggaf, A., Basuni, J., Sulaiman, A., Al-Sofi, A., et al.: IoT based dynamic road traffic management for smart cities. In: 12th International Conference on High-capacity Optical Networks and Enabling/Emerging Technologies (HONET), pp. 1–5. IEEE (2015)

    Google Scholar 

  73. Motamedi, M., Fong, D., Ghiasi, S.: Cappuccino: efficient CNN inference software synthesis for mobile system-on-chips. IEEE Embedded Systems Letters 11(1), 9–12 (2019)

    Article  Google Scholar 

  74. Muangprathub, J., Boonnam, N., Kajornkasirat, S., Lekbangpong, N., Wanichsombat, A., Nillaor, P.: IoT and agriculture data analysis for smart farm. Computers and Electronics in Agriculture 156, 467–474 (2019)

    Article  Google Scholar 

  75. Nekrasov, V., Shen, C., Reid, I.: Light-Weight RefineNet for Real-Time Semantic Segmentation. In: 29th British Machine Vision Conference (BMVC), pp. 1–15 (2018)

    Google Scholar 

  76. Oh, S., Hoogs, A., Perera, A., Cuntoor, N., Chen, C.C., Lee, J.T., Mukherjee, S., Aggarwal, J., Lee, H., Davis, L., et al.: A large-scale benchmark dataset for event recognition in surveillance video. In: Computer Vision and Pattern Recognition (CVPR), pp. 3153–3160. IEEE (2011)

    Google Scholar 

  77. Osman, D.A., Mohamed, S.W.: Hardware and software design of onboard computer of israsat1 CubeSat. In: 2017 International Conference on Communication, Control, Computing and Electronics Engineering (ICCCCEE), pp. 1–4. IEEE (2017)

    Google Scholar 

  78. Peer, D., Stabinger, S., Rodriguez-Sanchez, A.: Limitation of capsule networks (2021)

    Google Scholar 

  79. Picon, A., Alvarez-Gila, A., Seitz, M., Ortiz-Barredo, A., Echazarra, J., Johannes, A.: Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild. Computers and Electronics in Agriculture 161, 280–290 (2019)

    Article  Google Scholar 

  80. Pignatti, S., Casa, R., Harfouche, A., Huang, W., Palombo, A., Pascucci, S.: Maize crop and weeds species detection by using UAV VNIR hyperspectral data. In: IEEE International Geoscience and Remote Sensing Symposium, pp. 7235–7238 (2019)

    Google Scholar 

  81. Prutyanov, V., Melentev, N., Lopatkin, D., Menshchikov, A., Somov, A.: Developing IoT devices empowered by artificial intelligence: Experimental study. In: Global IoT Summit (GIoTS), pp. 1–6 (2019)

    Google Scholar 

  82. Rajasegaran, J., Jayasundara, V., Jayasekara, S., Jayasekara, H., Seneviratne, S., Rodrigo, R.: DeepCaps: Going deeper with capsule networks. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10717–10725 (2019)

    Google Scholar 

  83. Rasti, P., Demilly, D., Benoit, L., Belin, E., Ducournau, S., Chapeau-Blondeau, F., Rousseau, D.: Low-cost vision machine for high-throughput automated monitoring of heterotrophic seedling growth on wet paper support (2018)

    Google Scholar 

  84. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779–788 (2016)

    Google Scholar 

  85. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7263–7271 (2017)

    Google Scholar 

  86. Robicquet, A., Sadeghian, A., Alahi, A., Savarese, S.: Learning social etiquette: Human trajectory understanding in crowded scenes. In: European conference on computer vision, pp. 549–565. Springer (2016)

    Google Scholar 

  87. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention, pp. 234–241. Springer (2015)

    Google Scholar 

  88. Russel, J., Cohn, R.: International Aerial Robotics Competition. Book on Demand (2013)

    Google Scholar 

  89. Sa, I., Popović, M., Khanna, R., Chen, Z., Lottes, P., Liebisch, F., Nieto, J., Stachniss, C., Walter, A., Siegwart, R.: WeedMap: a large-scale semantic weed mapping framework using aerial multispectral imaging and deep neural network for precision farming. Remote Sensing 10(9), 1423 (2018)

    Article  Google Scholar 

  90. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 3856–3866. Curran Associates, Inc. (2017)

    Google Scholar 

  91. Sanchez-Castro, J.J., Rodríguez-Quiñonez, J.C., Ramírez-Hernández, L.R., Galaviz, G., Hernández-Balbuena, D., Trujillo-Hernández, G., Flores-Fuentes, W., Mercorelli, P., Hernández-Perdomo, W., Sergiyenko, O., González-Navarro, F.F.: A lean convolutional neural network for vehicle classification. In: IEEE 29th International Symposium on Industrial Electronics (ISIE), pp. 1365–1369 (2020)

    Google Scholar 

  92. Sánchez-Macián, A., Reviriego, P., Tabero, J., Regadío, A., Maestro, J.A.: SEFI protection for nanosat 16-bit chip onboard computer memories. IEEE Transactions on Device and Materials Reliability 17(4), 698–707 (2017)

    Article  Google Scholar 

  93. Schmidhuber, J.: Deep learning in neural networks: An overview. Neural networks 61, 85–117 (2015)

    Article  Google Scholar 

  94. Sergiyenko, O., Flores-Fuentes, W., Mercorelli, P.: Machine Vision and Navigation. Springer (2019)

    Google Scholar 

  95. Sergiyenko, O.Y., Tyrsa, V.V.: 3D optical machine vision sensors with intelligent data management for robotic swarm navigation improvement. IEEE Sensors Journal 21(10), 11262–11274 (2021)

    Article  Google Scholar 

  96. Shadrin, D., Menshchikov, A., Ermilov, D., Somov, A.: Designing future precision agriculture: Detection of seeds germination using artificial intelligence on a low-power embedded system. IEEE Sensors Journal 19(23), 11573–11582 (2019)

    Article  Google Scholar 

  97. Shadrin, D.G., Kulikov, V., Fedorov, M.: Instance segmentation for assessment of plant growth dynamics in artificial soilless conditions. In: 29th British Machine Vision Conference (BMVC), pp. 1–11 (2018)

    Google Scholar 

  98. Shean, D.E., Alexandrov, O., Moratto, Z.M., Smith, B.E., Joughin, I.R., Porter, C., Morin, P.: An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery. ISPRS Journal of Photogrammetry and Remote Sensing 116, 101–117 (2016)

    Article  Google Scholar 

  99. Shuaibu, M., Lee, W.S., Schueller, J., Gader, P., Hong, Y.K., Kim, S.: Unsupervised hyperspectral band selection for apple Marssonina blotch detection. Computers and Electronics in Agriculture 148, 45–53 (2018)

    Article  Google Scholar 

  100. Smolyanskiy, N., Kamenev, A., Smith, J., Birchfield, S.: Toward low-flying autonomous MAV trail navigation using deep neural networks for environmental awareness. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4241–4247. IEEE (2017)

    Google Scholar 

  101. Sodhi, P., Vijayarangan, S., Wettergreen, D.: In-field segmentation and identification of plant structures using 3D imaging. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5180–5187. IEEE (2017)

    Google Scholar 

  102. Somov, A., Shadrin, D., Fastovets, I., Nikitin, A., Matveev, S., Oseledets, I., Hrinchuk, O.: Pervasive agriculture: IoT-enabled greenhouse for plant growth control. IEEE Pervasive Computing 17(4), 65–75 (2018)

    Article  Google Scholar 

  103. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9 (2015)

    Google Scholar 

  104. Tan, M., Le, Q.V.: EfficientNet: Rethinking model scaling for convolutional neural networks. arXiv preprint arXiv:1905.11946 (2019)

    Google Scholar 

  105. Van Etten, A.: You only look twice: Rapid multi-scale object detection in satellite imagery. arXiv preprint arXiv:1805.09512 (2018)

    Google Scholar 

  106. Vega, F.A., Ramirez, F.C., Saiz, M.P., Rosua, F.O.: Multi-temporal imaging using an unmanned aerial vehicle for monitoring a sunflower crop. Biosystems Engineering 132, 19–27 (2015)

    Article  Google Scholar 

  107. Venkatesh, G.A., Sumanth, P., Jansi, K.: Fully autonomous UAV. In: 2017 International Conference on Technical Advancements in Computers and Communications (ICTACC), pp. 41–44. IEEE (2017)

    Google Scholar 

  108. Vo, A.V., Truong-Hong, L., Laefer, D.F., Bertolotto, M.: Octree-based region growing for point cloud segmentation. ISPRS Journal of Photogrammetry and Remote Sensing 104, 88–100 (2015)

    Article  Google Scholar 

  109. Wang, Y., Li, H., Li, X.: Re-architecting the on-chip memory sub-system of machine-learning accelerator for embedded devices. In: Proceedings of the 35th International Conference on Computer-Aided Design, p. 13. ACM (2016)

    Google Scholar 

  110. Wang, Y., Yan, J., Sun, Q., Li, J., Yang, Z.: A MobileNets convolutional neural network for GIS partial discharge pattern recognition in the ubiquitous power internet of things context: Optimization, comparison, and application. IEEE Access 7, 150226–150236 (2019)

    Article  Google Scholar 

  111. Weerasinghe, C., Kharitonenko, I., Ogunbona, P.: Method of color interpolation in a single sensor color camera using green channel separation. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 4, pp. 3233–3236 (2002)

    Google Scholar 

  112. Xia, G.S., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo, J., Datcu, M., Pelillo, M., Zhang, L.: Dota: A large-scale dataset for object detection in aerial images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3974–3983 (2018)

    Google Scholar 

  113. Yuan, J.: Learning building extraction in aerial scenes with convolutional networks. IEEE transactions on pattern analysis and machine intelligence 40(11), 2793–2798 (2017)

    Article  Google Scholar 

  114. Zhang, Z.: Improved Adam optimizer for deep neural networks. In: 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), pp. 1–2 (2018)

    Google Scholar 

  115. Zhao, Y., He, Y., Xu, X.: A novel algorithm for damage recognition on pest-infested oilseed rape leaves. Computers and electronics in agriculture 89, 41–50 (2012)

    Article  Google Scholar 

  116. Zhou, L., Chen, N., Chen, Z., Xing, C.: ROSCC: An efficient remote sensing observation-sharing method based on cloud computing for soil moisture mapping in precision agriculture. IEEE Journal of selected topics in applied earth observations and remote sensing 9(12), 5588–5598 (2016)

    Article  Google Scholar 

  117. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8697–8710 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Somov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Menshchikov, A., Somov, A. (2022). Aerial Robotics for Precision Agriculture: Weeds Detection Through UAV and Machine Vision. In: Sergiyenko, O. (eds) Optoelectronic Devices in Robotic Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-09791-1_2

Download citation

Publish with us

Policies and ethics