Skip to main content

Hierarchical Compressed Sensing

  • Chapter
  • First Online:
Compressed Sensing in Information Processing

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

Compressed sensing is a paradigm within signal processing that provides the means for recovering structured signals from linear measurements in a highly efficient manner. Originally devised for the recovery of sparse signals, it has become clear that a similar methodology would also carry over to a wealth of other classes of structured signals. In this work, we provide an overview over the theory of compressed sensing for a particularly rich family of such signals, namely those of hierarchically structured signals. Examples of such signals are constituted by blocked vectors, with only few non-vanishing sparse blocks. We present recovery algorithms based on efficient hierarchical hard thresholding. The algorithms are guaranteed to converge, in a stable fashion with respect to both measurement noise and model mismatches, to the correct solution provided the measurement map acts isometrically restricted to the signal class. We then provide a series of results establishing the required condition for large classes of measurement ensembles. Building upon this machinery, we sketch practical applications of this framework in machine-type communications and quantum tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  2. Acin, A., Bloch, I., Buhrman, H., Calarco, T., Eichler, C., Eisert, J., Esteve, D., Gisin, N., Glaser, S.J., Jelezko, F., Kuhr, S., Lewenstein, M., Riedel, M.F., Schmidt, P.O., Thew, R., Wallraff, A., Walmsley, I., Wilhelm, F.K.: The European quantum technologies roadmap. New J. Phys. 20, 080201 (2018). https://doi.org/10.1088/1367-2630/aad1ea

    Article  Google Scholar 

  3. Adcock, B., Hansen, A.C., Poon, C., Roman, B.: Breaking the coherence barrier: a new theory for compressed sensing. Forum Math. Sigma 5 (2017). https://doi.org/10.1017/fms.2016.32

  4. Baraniuk, R.G., Cevher, V., Duarte, M.F., Hegde, C.: Model-based compressive sensing. IEEE Trans. Inf. Theory 56, 1982–2001 (2010). https://doi.org/10.1109/TIT.2010.2040894

    Article  MathSciNet  MATH  Google Scholar 

  5. Blumensath, T., Davies, M.E.: Iterative thresholding for sparse approximations. J. Four. An. App. 14, 629–654 (2008). https://doi.org/10.1007/s00041-008-9035-z

    Article  MathSciNet  MATH  Google Scholar 

  6. Blumensath, T., Davies, M.E.: Normalized iterative hard thresholding: guaranteed stability and performance. IEEE J. Sel. Top. Sig. Proc. 4, 298–309 (2010). https://doi.org/10.1109/JSTSP.2010.2042411

    Article  Google Scholar 

  7. Bouchot, J.L., Foucart, S., Hitczenko, P.: Hard thresholding pursuit algorithms: number of iterations. App. Comp. Harm. An. 41, 412–435 (2016). https://doi.org/10.1016/j.acha.2016.03.002

    Article  MathSciNet  MATH  Google Scholar 

  8. Candes, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51, 4203–4215 (2005). https://doi.org/10.1109/TIT.2005.858979

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, Z., Yang, C.: Pilot decontamination in wideband massive MIMO systems by exploiting channel sparsity. IEEE Trans. Wirel. Commun. 15, 5087–5100 (2016). https://doi.org/10.1109/TWC.2016.2553021

    Google Scholar 

  10. Dai, W., Milenkovic, O.: Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. Inf. Theory 55, 2230–2249 (2009). https://doi.org/10.1109/TIT.2009.2016006

    Article  MathSciNet  MATH  Google Scholar 

  11. Eisert, J., Hangleiter, D., Walk, N., Roth, I., Markham, D., Parekh, R., Chabaud, U., Kashefi, E.: Quantum certification and benchmarking. Nat. Rev. Phys. 2, 382–390 (2020). https://doi.org/10.1038/s42254-020-0186-4

    Article  Google Scholar 

  12. Eldar, Y.C., Kutyniok, G.: Compressed Sensing: Theory and Applications. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  13. Eldar, Y.C., Mishali, M.: Block sparsity and sampling over a union of subspaces. In: Digital Signal Processing, 2009 16th International Conference on, pp. 1–8 (2009). https://doi.org/10.1109/ICDSP.2009.5201211

  14. Eldar, Y.C., Mishali, M.: Robust recovery of signals from a structured union of subspaces. IEEE Trans. Inf. Theory 55, 5302–5316 (2009). https://doi.org/10.1109/TIT.2009.2030471

    Article  MathSciNet  MATH  Google Scholar 

  15. Flammia, S.T., Gross, D., Liu, Y.K., Eisert, J.: Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators. New J. Phys. 14, 095022 (2012). https://doi.org/10.1088/1367-2630/14/9/095022

    Article  MATH  Google Scholar 

  16. Flinth, A., Groß, B., Roth, I., Eisert, J., Wunder, G.: Hierarchical isometry properties of hierarchical measurements (2021)

    Google Scholar 

  17. Foucart, S.: Hard thresholding pursuit: an algorithm for compressive sensing. SIAM J. Num. An. 49, 2543–2563 (2011). https://doi.org/10.1137/100806278

    Article  MathSciNet  MATH  Google Scholar 

  18. Foucart, S., Gribonval, R., Jacques, L., Rauhut, H.: Jointly low-rank and bisparse recovery: questions and partial answers. Preprint (2019). ArXiv:1902.04731

    Google Scholar 

  19. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing. Springer (2013)

    Google Scholar 

  20. Friedman, J., Hastie, T., Tibshirani, R.: A note on the group lasso and a sparse group lasso. Preprint (2010). ArXiv: 1001.0736

    Google Scholar 

  21. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002). https://doi.org/10.1103/RevModPhys.74.145

    Article  MATH  Google Scholar 

  22. Gluza, M., Schweigler, T., Rauer, B., Krumnow, C., Schmiedmayer, J., Eisert, J.: Quantum read-out for cold atomic quantum simulators. Phys. Commun. 20, 12 (2020). https://doi.org/10.1038/s42005-019-0273-y

    Article  Google Scholar 

  23. Gross, D., Liu, Y.K., Flammia, S.T., Becker, S., Eisert, J.: Quantum state tomography via compressed sensing. Phys. Rev. Lett. 105, 150401 (2010). https://doi.org/10.1103/PhysRevLett.105.150401

    Article  Google Scholar 

  24. Hoare, C.A.R.: Algorithm 65: find. Commun. ACM 4, 321–322 (1961). https://doi.org/10.1145/366622.366647

    Google Scholar 

  25. Jokar, S., Mehrmann, V.: Sparse solutions to underdetermined Kronecker product systems. Linear Algebra Appl. 431, 2437–2447 (2009). https://doi.org/10.1016/J.LAA.2009.08.005

    Article  MathSciNet  MATH  Google Scholar 

  26. Kalev, A., Kosut, R.L., Deutsch, I.H.: Quantum tomography protocols with positivity are compressed sensing protocols. NJP Quant. Inf. 1, 15018 (2015). https://doi.org/10.1038/npjqi.2015.18

    Article  Google Scholar 

  27. Kliesch, M., Roth, I.: Theory of quantum system certification. PRX Quantum 2, 010201 (2021). https://doi.org/10.1103/PRXQuantum.2.010201

    Article  Google Scholar 

  28. Li, C., Adcock, B.: Compressed sensing with local structure: uniform recovery guarantees for the sparsity in levels class. Appl. Comput. Harm. Anal. 46, 453–477 (2019). https://doi.org/10.1016/j.acha.2017.05.006

    Article  MathSciNet  MATH  Google Scholar 

  29. Ling, S., Strohmer, T.: Blind deconvolution meets blind demixing: algorithms and performance bounds. IEEE Trans. Inf. Theory 63, 4497–4520 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, H., Sun, F.: Hierarchical orthogonal matching pursuit for face recognition. In: The First Asian Conference on Pattern Recognition, pp. 278–282 (2011). https://doi.org/10.1109/ACPR.2011.6166530

  31. Magdon-Ismail, M.: NP-hardness and inapproximability of sparse PCA. Inf. Proc. Lett. 126, 35–38 (2017). https://doi.org/10.1016/j.ipl.2017.05.008

    Article  MathSciNet  MATH  Google Scholar 

  32. Needell, D., Tropp, J.A.: CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Appl. Comp. Harm. Anal. (2008). https://doi.org/10.1016/j.acha.2008.07.002

  33. Riofrio, C.A., Gross, D., Flammia, S.T., Monz, T., Nigg, D., Blatt, R., Eisert, J.: Experimental quantum compressed sensing for a seven-qubit system. Nat. Commun. 8, 15305 (2017). https://doi.org/10.1038/ncomms15305

    Article  Google Scholar 

  34. Roth, I., Flinth, A., Kueng, R., Eisert, J., Wunder, G.: Hierarchical restricted isometry property for Kronecker product measurements. In: 2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 632–638. IEEE (2018). https://doi.org/10.1109/ALLERTON.2018.8635829

  35. Roth, I., Kliesch, M., Flinth, A., Wunder, G., Eisert, J.: Reliable recovery of hierarchically sparse signals for Gaussian and Kronecker product measurements. IEEE Trans. Signal Process. 68, 4002–4016 (2020). https://doi.org/10.1109/tsp.2020.3003453

    Article  MathSciNet  MATH  Google Scholar 

  36. Roth, I., Kliesch, M., Wunder, G., Eisert, J.: Reliable recovery of hierarchically sparse signals. In: Proceedings of the third “International Traveling Workshop on Interactions between Sparse models and Technology” (iTWIST’16), pp. 36–38 (2016)

    Google Scholar 

  37. Roth, I., Kueng, R., Kimmel, S., Liu, Y.K., Gross, D., Eisert, J., Kliesch, M.: Recovering quantum gates from few average gate fidelities. Phys. Rev. Lett. 121 (2018). https://doi.org/10.1103/physrevlett.121.170502

  38. Roth, I., Wilkens, J., Hangleiter, D., Eisert, J.: Semi-device-dependent blind quantum tomography. Preprint (2020). ArXiv:2006.03069

    Google Scholar 

  39. Shabani, A., Kosut, R.L., Mohseni, M., Rabitz, H., Broome, M.A., Almeida, M.P., Fedrizzi, A., White, A.G.: Efficient measurement of quantum dynamics via compressive sensing. Phys. Rev. Lett. 106, 100401 (2011). https://doi.org/10.1103/PhysRevLett.106.100401

    Article  Google Scholar 

  40. Shabara, Y., Koksal, C.E., Ekici, E.: How long to estimate sparse MIMO channels. Preprint. arXiv:2101.07287 (2021)

    Google Scholar 

  41. Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: A sparse-group Lasso. J. Comp. Graph. Stat. 22, 231–245 (2013). https://doi.org/10.1080/10618600.2012.681250

    Article  MathSciNet  Google Scholar 

  42. Sprechmann, P., Ramirez, I., Sapiro, G., Eldar, Y.: Collaborative hierarchical sparse modeling. In: 2010 44th Annual Conference on Information Sciences and Systems (CISS), pp. 1–6 (2010). https://doi.org/10.1109/CISS.2010.5464845

  43. Sprechmann, P., Ramirez, I., Sapiro, G., Eldar, Y.C.: C-HiLasso: a collaborative hierarchical sparse modeling framework. IEEE Trans. Sig. Proc. 59, 4183–4198 (2011). https://doi.org/10.1109/TSP.2011.2157912

    Article  MathSciNet  MATH  Google Scholar 

  44. Steffens, A., Riofrío, C.A., McCutcheon, W., Roth, I., Bell, B.A., McMillan, A., Tame, M.S., Rarity, J.G., Eisert, J.: Experimentally exploring compressed sensing quantum tomography. Quantum Sci. and Technol. 2, 025005 (2017). https://doi.org/10.1088/2058-9565/aa6ae2

    Article  Google Scholar 

  45. Strohmer, T., Wei, K.: Painless breakups-efficient demixing of low rank matrices. J. Four. Ana. App. 25, 1–31 (2019). https://doi.org/10.1007/s00041-017-9564-4

    Article  MathSciNet  MATH  Google Scholar 

  46. Tropp, J.A.: Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 50, 2231–2242 (2004). https://doi.org/10.1109/TIT.2004.834793

    Article  MathSciNet  MATH  Google Scholar 

  47. Vandereycken, B.: Low-rank matrix completion by Riemannian optimization. SIAM J. Opt. 23, 1214–1236 (2013). https://doi.org/10.1137/110845768

    Article  MathSciNet  MATH  Google Scholar 

  48. Vasisht D. Kumar, S., Katabi, D.: Decimeter-level localization with a single WiFi access point. In: NSDI, pp. 165–178 (2016)

    Google Scholar 

  49. Wei, K., Cai, J.F., Chan, T.F., Leung, S.: Guarantees of Riemannian optimization for low rank matrix recovery. SIAM J. Math. Appl. 37, 1198–1222 (2016). https://doi.org/10.1137/15M1050525

    Article  MathSciNet  MATH  Google Scholar 

  50. Wilkens, J., Hangleiter, D., Roth, I.: (2020). Open source Gitlab repository at https://gitlab.com/wilkensJ/blind-quantum-tomography

    Google Scholar 

  51. Wunder, G., Flinth, A., Groß, B.: Measure concentration on the OFDM-based massive random access channel. In: 2021 IEEE Statistical Signal Processing Workshop (SSP), pp. 526–530 (2021)

    Google Scholar 

  52. Wunder, G., Roth, I., Fritschek, R., Groß, B., Eisert, J.: Secure massive IoT using hierarchical fast blind deconvolution. In: 2018 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), pp. 119–124. IEEE (2018)

    Google Scholar 

  53. Wunder, G., Stefanatos, S., Flinth, A., Roth, I., Caire, G.: Low-overhead hierarchically-sparse channel estimation for multiuser wideband massive MIMO. IEEE Trans. Wirel. Commun. 18, 2186–2199 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work is a report of some of the findings of the DFG-funded project EI 519/9-1 within the priority programme ‘Compressed Sensing in Information Processing’ (CoSIP), jointly held by J. Eisert and G. Wunder. We specifically thank our coauthors, in particular, M. Barzegar, G. Caire, R. Fritscheck, S. Haghighatshoar, D. Hangleiter, M. Kliesch, S. Stefanatos, R. Kueng, and J. Wilkens, with which we have explored this research theme over the years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Wunder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eisert, J., Flinth, A., Groß, B., Roth, I., Wunder, G. (2022). Hierarchical Compressed Sensing. In: Kutyniok, G., Rauhut, H., Kunsch, R.J. (eds) Compressed Sensing in Information Processing. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-09745-4_1

Download citation

Publish with us

Policies and ethics