Skip to main content

Intravascular Lithotripsy for Calcified Peripheral Arterial Disease

  • Chapter
  • First Online:
Peripheral Arterial Interventions

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 284 Accesses

Abstract

Intravascular lithotripsy (IVL) is a novel tool for the treatment of calcified coronary and peripheral arteries. IVL utilizes pulsatile sonic pressure waves to disrupt calcified plaques with the unique ability to treat both superficial and deep calcified plaques. The mechanisms of action, device specifics, and published experience utilizing IVL in peripheral artery disease are summarized. Effect of drug calcium on drug elution, IVL-facilitated large-bore access, and future applications of this technology are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Généreux P, Madhavan MV, Mintz GS, et al. Ischemic outcomes after coronary intervention of calcified vessels in acute coronary syndromes. Pooled analysis from the HORIZONS-AMI (harmonizing outcomes with revascularization and stents in acute myocardial infarction) and ACUITY (acute catheterization and urgent intervention triage strategy) TRIALS. J Am Coll Cardiol. 2014;63:1845–54.

    Article  Google Scholar 

  2. Soor GS, Vukin I, Leong SW, Oreopoulos G, Butany J. Peripheral vascular disease: who gets it and why? A histomorphological analysis of 261 arterial segments from 58 cases. Pathology. 2008;40:385–91.

    Article  Google Scholar 

  3. Frink RJ, Achor RW, Brown AL Jr, Kincaid OW, Brandenburg RO. Significance of calcification of the coronary arteries. Am J Cardiol. 1970;26:241–7.

    Article  CAS  Google Scholar 

  4. Tan K, Sulke N, Taub N, Sowton E. Clinical and lesion morphologic determinants of coronary angioplasty success and complications: current experience. J Am Coll Cardiol. 1995;25:855–65.

    Article  CAS  Google Scholar 

  5. Noble S, Roffi M. Overcoming the challenges of the transfemoral approach in transcatheter aortic valve implantation. Interv Cardiol. 2013;8(2):131–4.

    Article  Google Scholar 

  6. Walker KL, Nolan BW, Columbo JA, et al. Lesion complexity drives the cost of superficial femoral artery endovascular interventions. J Vasc Surg. 2015;62:998–1002.

    Article  Google Scholar 

  7. Fitzgerald PJ, Ports TA, Yock PG. Contribution of localized calcium deposits to dissection after angioplasty. An observational study using intravascular ultrasound. Circulation. 1992;86:64–70.

    Article  CAS  Google Scholar 

  8. McAteer JA, Bailey MR, Williams JC Jr, et al. Strategies for improved shock wave lithotripsy. Minerva Urol Nefrol. 2005;57(4):271–87.

    CAS  PubMed  Google Scholar 

  9. Davros WJ, Garra BS, Zeman RK. Gallstone lithotripsy: relevant physical principles and technical issues. Radiology. 1991;178:397–408.

    Article  CAS  Google Scholar 

  10. Ali ZA, Brinton TJ, Hill JM, et al. Optical coherence tomography characterization of coronary lithoplasty for treatment of calcified lesions: first description. JACC Cardiovasc Imaging. 2017;10(8):897–906.

    Article  Google Scholar 

  11. Brinton TJ, Ali ZA, et al. Feasibility of shockwave coronary intravascular lithotripsy for the treatment of calcified coronary stenoses. Circulation. 2019;139:834–6.

    Article  Google Scholar 

  12. Ali ZA, Nef H, et al. Safety and effectiveness of coronary intravascular lithotripsy for treatment of severely calcified coronary stenoses; the disrupt CAD II study. Circ Cardiovasc Interv. 2019;12:e008434.

    Article  CAS  Google Scholar 

  13. Feldman DN, Armstrong EJ, Aronow HD, et al. SCAI consensus guidelines for device selection in femoral-popliteal arterial interventions. Catheter Cardiovasc Interv. 2018;92(1):124–40.

    Article  Google Scholar 

  14. Patel MR, Conte MS, Cutlip DE, et al. Evaluation and treatment of patients with lower extremity peripheral artery disease: consensus definitions from peripheral academic research consortium (PARC). J Am Coll Cardiol. 2015;65(9):931–41.

    Article  Google Scholar 

  15. Rocha-Singh KJ, Zeller T, Jaff MR. Peripheral arterial calcification: prevalence, mechanism, detection, and clinical implications. Catheter Cardiovasc Interv. 2014;83(6):E212–20.

    Article  Google Scholar 

  16. Thukkani AK, Kinlay S. Endovascular intervention for peripheral artery disease. Circ Res. 2015;116(9):1599–613.

    Article  CAS  Google Scholar 

  17. Dini CS, Tomberli B, Mattesini A, et al. Intravascular lithotripsy for calcific coronary and peripheral artery stenoses. EuroIntervention. 2019;15:714–21.

    Article  Google Scholar 

  18. Brodmann M, Werner M, Brinton TJ, et al. Safety and performance of lithoplasty for treatment of calcified peripheral artery lesions. J Am Coll Cardiol. 2017;70(7):908–10.

    Article  Google Scholar 

  19. Brodmann M, Werner M, Holden A, et al. Primary outcomes and mechanism of action of intravascular lithotripsy in calcified, femoropopliteal lesions: result of disrupt PAD II. Catheter Cardiovasc Interv. 2019;93(2):335–42.

    Article  Google Scholar 

  20. Brodmann M, Holden A, Zeller T. Safety and feasibility of intravascular lithotripsy for treatment of below-the-knee arterial stenoses. J Endovasc Ther. 2018;25(4):499–503.

    Article  Google Scholar 

  21. Schneider PA, Laird JR, Tepe G, et al. Treatment effect of drug-coated balloons is durable to 3 years in the femoro-popliteal arteries: long-term results of the IN.PACT SFA randomized trial. Circ Cardiovasc Interv. 2018;11(1):e005891.

    Article  Google Scholar 

  22. Lugenbiel I, Grebner M, Zhou Q, et al. Treatment of femoropopliteal lesions with the AngioSculpt scoring balloon—results from the Heidelberg PANTHER registry. Vasa. 2018;47(1):49–55.

    Article  Google Scholar 

  23. Zeller T, Langhoff R, Rocha-Singh KJ, et al. Directional atherectomy followed by a paclitaxel-coated balloon to inhibit restenosis and maintain vessel patency: twelve-month results of the DEFINITIVE AR study. Circ Cardiovasc Interv. 2017;10(9):e004848.

    Article  Google Scholar 

  24. Fanelli F, Cannavale A, Gazzetti M, et al. Calcium burden assessment and impact on drug-eluting balloons in peripheral arterial disease. Cardiovasc Intervent Radiol. 2014;37(4):898–907.

    Article  CAS  Google Scholar 

  25. Adams G, Shammas N, Mangalmurti S, et al. Intravascular lithotripsy for treatment of calcified lower extremity arterial stenosis: initial analysis of the disrupt PAD III study. J Endovasc Ther. 2020;27(3):473–80.

    Article  Google Scholar 

  26. Tepe G, Brodmann M, Bachincky W, Holden A, Zeller T, Mangalmurti S, Nolte-Ernsting C, Virmani R, Parikh S, Gray W, for the Disrupt PAD III Investigators. Intravascular lithotripsy for peripheral artery calcification: mid-term outcomes from the randomized disrupt PAD III trial. JSCAI. 2022. https://doi.org/10.1016/j.jscai.2022.100341.

  27. Bavaria JE, Tommaso CL, Brindis RG, et al. 2018 AATS/ACC/SCAI/STS expert consensus systems of care document: operator and institutional recommendations and requirements for transcatheter aortic valve replacement: a joint report of the American Association for Thoracic Surgery, the American College of Cardiology, the Society for Cardiovascular Angiography and Interventions, and the Society of Thoracic Surgeons. J Am Coll Cardiol. 2019;73:340–74.

    Article  Google Scholar 

  28. Holmes DR, Nishimura RA, Grover FL, et al. Annual outcomes with transcatheter valve therapy: from the STS/ACC TVT registry. J Am Coll Cardiol. 2015;66:2813–23.

    Article  Google Scholar 

  29. Biasco L, Ferrari E, et al. Access sites for TAVI: patient selection criteria, technical aspects, and outcomes. Front Cardiovasc Med. 2018;5:88.

    Article  Google Scholar 

  30. Di Mario C, Chiriatti N, et al. Lithoplasty-assisted transfemoral aortic valve implantation. Eur Heart J. 2018;41(8):942.

    Article  Google Scholar 

  31. Gorla R, Cannone GS, et al. Transfemoral aortic valve implantation following lithoplasty of iliac artery in a patient with poor vascular access. Catheter Cardiovasc Interv. 2019;93:E140–2.

    Article  Google Scholar 

  32. Di Mario C, Goodwin M, et al. A prospective registry of intravascular lithotripsy-enabled vascular access for transfemoral transcatheter aortic valve replacement. JACC Cardiovasc Interv. 2019;12(5):502–4.

    Article  Google Scholar 

  33. Rosseel L, De Backer O, Søndergaard L, Bieliauskas G. Intravascular iliac artery lithotripsy to enable transfemoral thoracic endovascular aortic repair. Catheter Cardiovasc Interv. 2020;95:E96–9.

    Article  Google Scholar 

  34. Riley RF, Corl JD, Kereiakes DJ. Intravascular lithotripsy-assisted Impella insertion: a case report. Catheter Cardiovasc Interv. 2019;93(7):1317–9. https://doi.org/10.1002/ccd.28168.

    Article  PubMed  Google Scholar 

  35. Mordasini P, Gralla J, Do DD, Schmidli, Keseru B, Arnold M, Fischer U, Schmidli G, Brekenfeld C. Percutaneous and open retrograde endovascular stenting of symptomatic high-grade innominate artery stenosis: technique and follow-up. AJNR Am J Neuroradiol. 2011;32(9):1726–31.

    Article  CAS  Google Scholar 

  36. Giannopoulos S, Speziale F, Vadal G, Soukas PA, Kuhn BA, Stolz CL, Foteh MI, Mena-Hurtado C, Armstrong EJ. Intravascular lithotripsy for treatment of calcified lesions during carotid artery stenting. J Endovasc Ther. 2021;28(1):93–9. https://doi.org/10.1177/1526602820954244. Epub 2020 Sep 1. PMID: 32869718.

    Article  PubMed  Google Scholar 

  37. Khan MS, Baig M, Hyder ON, Aronow HD, Soukas PA. Intravascular lithotripsy for the treatment of severely calcified mesenteric stenosis. JACC Case Rep. 2020;2(6):956–60.

    Article  Google Scholar 

  38. Armstrong EJ, Soukas PA, Shammas N, Chamberlain J, Pop A, Adams G, de Freitas D, Valle J, Woo E, Bernardo NL. Intravascular lithotripsy for the treatment of calcified, stenotic iliac arteries: a cohort analysis from the disrupt PAD III study. Cardiovasc Revasc Med. 2020;21(10):1262–8. https://doi.org/10.1016/j.carrev.2020.02.026. Epub 2020 Mar 2. PMID: 32147133.

    Article  PubMed  Google Scholar 

  39. Nguyen BN, Amdur RL, Abugideiri M, et al. Postoperative complications after common femoral endarterectomy. J Vasc Surg. 2015;61(6):1489–1494.e1.

    Article  Google Scholar 

  40. Brodmann M, Schwindt A, Argyrios A, Gammon R. Safety and feasibility of intravascular lithotripsy for treatment of common femoral artery stenoses. J Endovasc Ther. 2019;26(3):283–7.

    Article  Google Scholar 

  41. Guzman RJ, Brinkley DM, Schumacher PM, et al. Tibial artery calcification as a marker of amputation risk in patients with peripheral artery disease. J Am Coll Cardiol. 2008;51(2):1967–74.

    Article  CAS  Google Scholar 

  42. Bauman F, Fust J, Engelberger RP, et al. Early recoil after balloon angioplasty of tibial artery obstructions in patients with critical limb ischemia. J Endovasc Ther. 2014;21(1):44–51.

    Article  Google Scholar 

  43. Hill JM, Kereiakes DJ, et al. Intravascular lithotripsy for treatment of severely calcified coronary artery disease. J Am Coll Cardiol. 2020;76(22):2635–46.

    Article  CAS  Google Scholar 

  44. Case B, Yurasi C, Waxman R, et al. Intravascular lithotripsy facilitated percutaneous endovascular intervention of the aortic arch: a single-center experience. Cardiovasc Revasc Med. 2020;21(8):1006–15.

    Article  Google Scholar 

  45. Henry CL, Hansen SK, et al. Intravascular lithotripsy during trans-carotid arterial revascularization for highly calcified lesions in high- risk patients. J Vasc Surg Cases Innov Tech. 2020;7(1):68–73. https://doi.org/10.1016/j.jvscit.2020.10.018.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mintz, A.J., Soukas, P.A. (2022). Intravascular Lithotripsy for Calcified Peripheral Arterial Disease. In: Shammas, N.W. (eds) Peripheral Arterial Interventions. Contemporary Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-031-09741-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09741-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09740-9

  • Online ISBN: 978-3-031-09741-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics