Skip to main content

Biodegradable Mg Alloys for Orthopedic Implant Materials

  • Reference work entry
  • First Online:
Handbook of Biodegradable Materials
  • 1692 Accesses

Abstract

Magnesium is the lightest structural metal used in materials and is considered one of the most abundant elements. Therefore, magnesium alloys are an excellent choice for many applications when a lightweight design is required. Magnesium alloys are natural biodegradable materials due to their easy susceptibility to corrosion when placed within aqueous media. Among biodegradable materials, magnesium has an essential role in many vital processes in the human body. Furthermore, magnesium alloys have mechanical properties like those of the human body bones. These make magnesium alloys promising and an alternative to the permanent implant materials to avoid a second surgery for implant removal. The rapid degradation of magnesium alloy implants in living organisms limits its widespread usage in this field. This rapid degradation leads to early deterioration of the implant’s mechanical properties before the tissue healing process. Moreover, the high amount of corrosion products and the alkalinity increase in the surrounding area will lead to toxic events. So, there is a significant need to limit the degradation rate of the alloy to fit the rate at which the surrounding tissue heals. Chemicals, physical, mechanical, and biological coatings are among the surface treatments performed to control the degradation rate and ensure the bone healing process. This chapter briefly describes the most biodegradable magnesium alloys and some selected surface treatments for bio-implant applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ca-PP:

Calcium phosphatePhosphate

CVD:

Chemical vapor deposition

DCPD:

Dicalcium phosphate dehydrate

FHA:

Fluoridate hydroxyapatite

HA:

Hydroxyapatite

ODPA:

Octadecylphosphonic acid

PA:

Phytic acid

PBS:

Phosphate buffer saline

PEO:

Plasma electrolytic oxidation

PVD:

Physical vapor deposition

REEs:

Rare earth elements

SA:

Stearic acid

SAM:

Self-assembled monolayers

SEM:

Scanning electron microscope

References

  1. Simandl GJ, Schultes H, Simandl J, and Paradis S. Magnesium-Raw Materials, Metal Extraction and Economics-Global Picture. in Digging Deeper, Proceedings of the Ninth Biennial SGA Meeting. 2007.

    Google Scholar 

  2. Wan Y, Xiong G, Luo H, He F, Huang Y, and Zhou X (2008) Preparation and characterization of a new biomedical magnesium–calcium alloy. Materials & Design 29(10):2034–2037

    Article  CAS  Google Scholar 

  3. Song G and Song S (2007) A possible biodegradable magnesium implant material. Advanced Engineering Materials 9(4):298–302

    Article  CAS  Google Scholar 

  4. Li N and Zheng Y (2013) Novel Magnesium Alloys Developed for Biomedical Application: A Review. Journal of Materials Science & Technology 29(6):489–502

    Article  CAS  Google Scholar 

  5. Mordike BL and Ebert T (2001) Magnesium: Properties — applications — potential. Materials Science and Engineering: A 302(1):37–45

    Article  Google Scholar 

  6. Salman S and Gouda MK, Sealing TreatmentsSealing treatments for Electrochemical Conversion CoatingsElectrochemical conversion coatings, in Conversion Coatings for Magnesium and its Alloys, VS Saji, TSN Sankara Narayanan, X Chen, Editors. 2022, Springer International Publishing: Cham. p. 533–555.

    Google Scholar 

  7. Gouda MK, Salman SA, Ebied S, Ashmawy AM, Gepreel MAH, and Chiba A (2021) Biocompatibility and corrosion resistance of low-cost Ti–14Mn–Zr alloys. Journal of Materials Research

    Google Scholar 

  8. Buj-Corral I, Tejo-Otero A, and Fenollosa-Artés F (2020) Development of AM Technologies for Metals in the Sector of Medical Implants. Metals 10(5)

    Google Scholar 

  9. Gouda MK, Salman SA, and Ebied S (2022) Improvement in the microhardness and corrosion behaviour of Ti-14Mn biomedical alloy by cold working. Materials Research Express 9(1):015401

    Article  CAS  Google Scholar 

  10. Lu Y, Bradshaw AR, Chiu YL, and Jones IP (2015) Effects of secondary phase and grain size on the corrosion of biodegradable Mg–Zn–Ca alloys. Materials Science and Engineering: C 48:480–486

    Article  CAS  Google Scholar 

  11. Cho DH, Nam JH, Lee BW, Cho KM, and Park IM (2016) Effect of Mn addition on grain refinement of biodegradable Mg4Zn0. 5Ca alloy. Journal of Alloys and Compounds 676:461–468

    Article  CAS  Google Scholar 

  12. Gupta M and Ling SNM, Magnesium, magnesium alloys, and magnesium composites. 2011, Hoboken: Wiley

    Book  Google Scholar 

  13. Hermawan H, Biodegradable metals: state of the art, in Biodegradable Metals. 2012, Springer. p. 13–22.

    Google Scholar 

  14. Chen Y, Li Y, Walmsley JC, Dumoulin S, Skaret PC, and Roven HJ (2010) Microstructure evolution of commercial pure titanium during equal channel angular pressing. Materials Science and Engineering: A 527(3):789–796

    Article  Google Scholar 

  15. Salman SA and Okido M, 8 - Anodization of magnesium (Mg) alloys to improve corrosion resistance, in Corrosion Prevention of Magnesium Alloys, G-L Song, Editor. 2013, Woodhead Publishing. p. 197–231.

    Google Scholar 

  16. Zhang X, Yuan G, Niu J, Fu P, and Ding W (2012) Microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of as-extruded Mg–Nd–Zn–Zr alloy with different extrusion ratios. Journal of the Mechanical Behavior of Biomedical Materials 9:153–162

    Article  Google Scholar 

  17. Ding Y, Wen C, Hodgson P, and Li Y (2014) Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: a review. Journal of Materials Chemistry B 2(14):1912–1933

    Article  CAS  Google Scholar 

  18. Han H-S, Loffredo S, Jun I, Edwards J, Kim Y-C, Seok H-K, Witte F, Mantovani D, and Glyn-Jones S (2019) Current status and outlook on the clinical translation of biodegradable metals. Materials Today 23:57–71

    Article  CAS  Google Scholar 

  19. Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R, and Feyerabend F (2008) Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Materials Science 12(5):63–72

    Article  CAS  Google Scholar 

  20. Zheng YF, Gu XN, and Witte F (2014) Biodegradable metals. Materials Science and Engineering: R: Reports 77:1–34

    Article  Google Scholar 

  21. Zainal Abidin NI, Atrens AD, Martin D, and Atrens A (2011) Corrosion of high purity Mg, Mg2Zn0.2Mn, ZE41 and AZ91 in Hank’s solution at 37°C. Corrosion Science 53(11):3542–3556

    Article  Google Scholar 

  22. Walker J, Shadanbaz S, Woodfield TBF, Staiger MP, and Dias GJ (2014) Magnesium biomaterials for orthopedic application: A review from a biological perspective. Journal of Biomedical Materials Research Part B: Applied Biomaterials 102(6):1316–1331

    Article  Google Scholar 

  23. Ghali E, Dietzel W, and Kainer K-U (2004) General and localized corrosion of magnesium alloys: A critical review. Journal of Materials Engineering and Performance 13(1):7–23

    Article  CAS  Google Scholar 

  24. Singh IB, Singh M, and Das S (2015) A comparative corrosion behavior of Mg, AZ31 and AZ91 alloys in 3.5% NaCl solution. Journal of Magnesium and Alloys 3(2):142–148

    Article  CAS  Google Scholar 

  25. Rahman ZU, Pompa L, and Haider W (2015) Electrochemical characterization and in-vitro bio-assessment of AZ31B and AZ91E alloys as biodegradable implant materials. Journal of Materials Science: Materials in Medicine 26(8):217

    Google Scholar 

  26. Wen Z, Wu C, Dai C, and Yang F (2009) Corrosion behaviors of Mg and its alloys with different Al contents in a modified simulated body fluid. Journal of Alloys and Compounds 488(1):392–399

    Article  CAS  Google Scholar 

  27. Zhang S, Zhang X, Zhao C, Li J, Song Y, Xie C, Tao H, Zhang Y, He Y, Jiang Y, and Bian Y (2010) Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomaterialia 6(2):626–640

    Article  CAS  Google Scholar 

  28. El-Rahman SSA (2003) Neuropathology of aluminum toxicity in rats (glutamate and GABA impairment). Pharmacological Research 47(3):189–194

    Article  CAS  Google Scholar 

  29. Ferreira PC, Piai KdA, Takayanagui AMM, and Segura-Muñoz SI (2008) Aluminum as a risk factor for Alzheimer’s disease. Revista latino-americana de enfermagem 16:151–157

    Article  Google Scholar 

  30. Meshinchi Asl K, Tari A, and Khomamizadeh F (2009) The effect of different content of Al, RE and Si element on the microstructure, mechanical and creep properties of Mg–Al alloys. Materials Science and Engineering: A 523(1):1–6

    Google Scholar 

  31. Gu X, Zheng Y, Cheng Y, Zhong S, and Xi T (2009) In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials 30(4):484–498

    Article  CAS  Google Scholar 

  32. Song GL and Atrens A (1999) Corrosion mechanisms of magnesium alloys 1(1):11–33

    Google Scholar 

  33. Cipriano AF, Zhao T, Johnson I, Guan R-G, Garcia S, and Liu H (2013) In vitro degradation of four magnesium–zinc–strontium alloys and their cytocompatibility with human embryonic stem cells. Journal of Materials Science: Materials in Medicine 24(4):989–1003

    CAS  Google Scholar 

  34. Huan ZG, Leeflang MA, Zhou J, Fratila-Apachitei LE, and Duszczyk J (2010) In vitro degradation behavior and cytocompatibility of Mg–Zn–Zr alloys. Journal of Materials Science: Materials in Medicine 21(9):2623–2635

    CAS  Google Scholar 

  35. Fazel Anvari-Yazdi A, Tahermanesh K, Hadavi SMM, Talaei-Khozani T, Razmkhah M, Abed SM, and Mohtasebi MS (2016) Cytotoxicity assessment of adipose-derived mesenchymal stem cells on synthesized biodegradable Mg-Zn-Ca alloys. Materials Science and Engineering: C 69:584–597

    Article  CAS  Google Scholar 

  36. Weigand E and Boesch-Saadatmandi C (2012) Interaction Between Marginal Zinc and High Fat Supply on Lipid Metabolism and Growth of Weanling Rats. Lipids 47(3):291–302

    Article  CAS  Google Scholar 

  37. Gürsel FE, Ateş A, Bilal T, and Altiner A (2012) Effect of Dietary Garcinia cambogia Extract on Serum Essential Minerals (Calcium, Phosphorus, Magnesium) and Trace Elements (Iron, Copper, Zinc) in Rats Fed with High-Lipid Diet. Biological Trace Element Research 148(3):378–382

    Article  Google Scholar 

  38. Brandão-Neto J, Stefan V, Mendonça BB, Bloise W, and Castro AVB (1995) The essential role of zinc in growth. Nutrition Research 15(3):335–358

    Article  Google Scholar 

  39. Gauthier MA, Eibl JK, Crispo JAG, and Ross GM (2008) Covalent arylation of metallothionein by oxidized dopamine products: A possible mechanism for zinc-mediated enhancement of dopaminergic neuron survival. Neurotoxicity Research 14(4):317–328

    Article  CAS  Google Scholar 

  40. Erdmann N, Angrisani N, Reifenrath J, Lucas A, Thorey F, Bormann D, and Meyer-Lindenberg A (2011) Biomechanical testing and degradation analysis of MgCa0.8 alloy screws: A comparative in vivo study in rabbits. Acta Biomaterialia 7(3):1421–1428

    Article  CAS  Google Scholar 

  41. Serre CM, Papillard M, Chavassieux P, Voegel JC, and Boivin G (1998) Influence of magnesium substitution on a collagen–apatite biomaterial on the production of a calcifying matrix by human osteoblasts. Journal of Biomedical Materials Research 42(4):626–633

    Article  CAS  Google Scholar 

  42. Salahshoor M and Guo Y (2012) Biodegradable Orthopedic Magnesium-Calcium (MgCa) Alloys, Processing, and Corrosion Performance. Materials 5(1)

    Google Scholar 

  43. Drynda A, Hassel T, Hoehn R, Perz A, Bach F-W, and Peuster M (2010) Development and biocompatibility of a novel corrodible fluoride-coated magnesium-calcium alloy with improved degradation kinetics and adequate mechanical properties for cardiovascular applications. Journal of Biomedical Materials Research Part A 93A(2):763–775

    CAS  Google Scholar 

  44. Erdmann N, Bondarenko A, Hewicker-Trautwein M, Angrisani N, Reifenrath J, Lucas A, and Meyer-Lindenberg A (2010) Evaluation of the soft tissue biocompatibility of MgCa0.8 and surgical steel 316L in vivo: a comparative study in rabbits. BioMedical Engineering OnLine 9(1):63

    Article  Google Scholar 

  45. Liu CL, Wang YJ, Zeng RC, Zhang XM, Huang WJ, and Chu PK (2010) In vitro corrosion degradation behaviour of Mg–Ca alloy in the presence of albumin. Corrosion Science 52(10):3341–3347

    Article  CAS  Google Scholar 

  46. Li Z, Gu X, Lou S, and Zheng Y (2008) The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials 29(10):1329–1344

    Article  CAS  Google Scholar 

  47. Lee YC, Dahle AK, and StJohn DH (2000) The role of solute in grain refinement of magnesium. Metallurgical and Materials Transactions A 31(11):2895–2906

    Article  Google Scholar 

  48. Liu CL, Jiang J, Wang M, Wang YJ, Chu PK, and Huang WJ (2011) In Vitro Degradation and Biocompatibility of WE43, ZK60, and AZ91 Biodegradable Magnesium Alloys. Advanced Materials Research 287–290:2008–2014

    Google Scholar 

  49. Saldaña L, Méndez-Vilas A, Jiang L, Multigner M, González-Carrasco JL, Pérez-Prado MT, González-Martín ML, Munuera L, and Vilaboa N (2007) In vitro biocompatibility of an ultrafine grained zirconium. Biomaterials 28(30):4343–4354

    Article  Google Scholar 

  50. Li Y, Wen C, Mushahary D, Sravanthi R, Harishankar N, Pande G, and Hodgson P (2012) Mg–Zr–Sr alloys as biodegradable implant materials. Acta Biomaterialia 8(8):3177–3188

    Article  CAS  Google Scholar 

  51. Zhou Y-L, Li Y, Luo D-M, Wen C, and Hodgson P (2013) Microstructures, mechanical properties and in vitro corrosion behaviour of biodegradable Mg–Zr–Ca alloys. Journal of Materials Science 48(4):1632–1639

    Article  CAS  Google Scholar 

  52. Song G (2007) Control of biodegradation of biocompatable magnesium alloys. Corrosion Science 49(4):1696–1701

    Article  CAS  Google Scholar 

  53. Gu XN, Xie XH, Li N, Zheng YF, and Qin L (2012) In vitro and in vivo studies on a Mg–Sr binary alloy system developed as a new kind of biodegradable metal. Acta Biomaterialia 8(6):2360–2374

    Article  CAS  Google Scholar 

  54. Zhang W, Shen Y, Pan H, Lin K, Liu X, Darvell BW, Lu WW, Chang J, Deng L, Wang D, and Huang W (2011) Effects of strontium in modified biomaterials. Acta Biomaterialia 7(2):800–808

    Article  CAS  Google Scholar 

  55. Pors Nielsen S (2004) The biological role of strontium. Bone 35(3):583–588

    Article  CAS  Google Scholar 

  56. Zhao C, Pan F, Zhang L, Pan H, Song K, and Tang A (2017) Microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys. Materials Science and Engineering: C 70:1081–1088

    Article  CAS  Google Scholar 

  57. Bornapour M, Muja N, Shum-Tim D, Cerruti M, and Pekguleryuz M (2013) Biocompatibility and biodegradability of Mg–Sr alloys: The formation of Sr-substituted hydroxyapatite. Acta Biomaterialia 9(2):5319–5330

    Article  CAS  Google Scholar 

  58. Jung O, Smeets R, Porchetta D, Kopp A, Ptock C, Müller U, Heiland M, Schwade M, Behr B, Kröger N, Kluwe L, Hanken H, and Hartjen P (2015) Optimized in vitro procedure for assessing the cytocompatibility of magnesium-based biomaterials. Acta Biomaterialia 23:354–363

    Article  CAS  Google Scholar 

  59. Gu X-N, Li S-S, Li X-M, and Fan Y-B (2014) Magnesium based degradable biomaterials: A review. Frontiers of Materials Science 8(3):200–218

    Article  Google Scholar 

  60. Brar HS, Berglund IS, Allen JB, and Manuel MV (2014) The role of surface oxidation on the degradation behavior of biodegradable Mg–RE (Gd, Y, Sc) alloys for resorbable implants. Materials Science and Engineering: C 40:407–417

    Article  CAS  Google Scholar 

  61. Yang L, Huang Y, Peng Q, Feyerabend F, Kainer KU, Willumeit R, and Hort N (2011) Mechanical and corrosion properties of binary Mg–Dy alloys for medical applications. Materials Science and Engineering: B 176(20):1827–1834

    Article  CAS  Google Scholar 

  62. Willbold E, Gu X, Albert D, Kalla K, Bobe K, Brauneis M, Janning C, Nellesen J, Czayka W, Tillmann W, Zheng Y, and Witte F (2015) Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium. Acta Biomaterialia 11:554–562

    Article  CAS  Google Scholar 

  63. Echeverry-Rendon M, Allain J, Robledo S, Echeverria F, and Harmsen M (2019) Coatings for biodegradable magnesium-based supports for therapy of vascular disease: A general view. Materials Science & Engineering C-Materials For Biological Applications 102:150–163

    Article  CAS  Google Scholar 

  64. Bakhsheshi-Rad H, Akbari M, Ismail A, Aziz M, Hadisi Z, Pagan E, Daroonparvar M, and Chen X (2019) Coating biodegradable magnesium alloys with electrospun poly-L-lactic acid-akermanite-doxycycline nanofibers for enhanced biocompatibility, antibacterial activity, and corrosion resistance. Surface & Coatings Technology 377

    Google Scholar 

  65. Salman S, Kuroda K, and Okido M (2015) Effect of Anodizing Time on the Surface Morphology and Corrosion Resistance of AZ31 Magnesium Alloy. Science of Advanced Materials 7(1):76–79

    Article  CAS  Google Scholar 

  66. Salman S, Ichino R, and Okido M (2007) Development of cerium-based conversion coating on AZ31 magnesium alloy. Chemistry Letters 36(8):1024–1025

    Article  CAS  Google Scholar 

  67. He L-J, Shao Y, Li S-Q, Cui L-Y, Ji X-J, Zhao Y-B, and Zeng R-C (2021) Advances in layer-by-layer self-assembled coatings upon biodegradable magnesium alloys. Science China-Materials

    Google Scholar 

  68. Hafeez M, Farooq A, Zang A, Saleem A, and Deen K (2020) Phosphate chemical conversion coatings for magnesium alloys: a review. Journal of Coatings Technology and Research 17(4):827–849

    Article  CAS  Google Scholar 

  69. Pereda M, Alonso C, Gamero M, del Valle J, and de Mele M (2011) Comparative study of fluoride conversion coatings formed on biodegradable powder metallurgy Mg: The effect of chlorides at physiological level. Materials Science & Engineering C-Materials For Biological Applications 31(5):858–865

    Article  CAS  Google Scholar 

  70. Chen X, Yang H, Abbott T, Easton M, and Birbilis N (2014) Corrosion protection of magnesium and its alloys by metal phosphate conversion coatings. Surface Engineering 30(12):871–879

    Article  CAS  Google Scholar 

  71. Zaludin M, Jamal Z, Jamaludin S, Derman M, Nazeri M, Ying L, and BinIdris M (2016) A Brief Review of Calcium Phosphate Conversion Coating on Magnesium and its Alloys. 2nd International Conference on Functional Materials and Metallurgy (Icofm 2016) 1756

    Google Scholar 

  72. Saremi M and Mortazavi S (2016) Effect of polypyrrole coating modified by sodium fluoride and polyethylene glycol on corrosion behaviour of AZ31 magnesium alloy. Micro & Nano Letters 11(12):866–869

    Article  CAS  Google Scholar 

  73. Narayanan T, Park I, and Lee M (2014) Tailoring the composition of fluoride conversion coatings to achieve better corrosion protection of magnesium for biomedical applications. Journal of Materials Chemistry B 2(21):3365–3382

    Article  Google Scholar 

  74. Yin Z-Z, Qi W-C, Zeng R-C, Chen X-B, Gu C-D, Guan S-K, and Zheng Y-F (2020) Advances in coatings on biodegradable magnesium alloys. Journal of Magnesium and Alloys 8(1):42–65

    Article  CAS  Google Scholar 

  75. Zai W, Zhang X, Su Y, Man H, Li G, and Lian J (2020) Comparison of corrosion resistance and biocompatibility of magnesium phosphate (MgP), zinc phosphate (ZnP) and calcium phosphate (CaP) conversion coatings on Mg alloy. Surface & Coatings Technology 397

    Google Scholar 

  76. Jiang HB, Wu G, Lee S-B, and Kim K-M (2017) Achieving controllable degradation of a biomedical magnesium alloy by anodizing in molten ammonium bifluoride. Surface and Coatings Technology 313:282–287

    Article  CAS  Google Scholar 

  77. Gray J, Luan B, and compounds (2002) Protective coatings on magnesium and its alloys—a critical review. Journal of Alloys and Compounds 336(1–2):88–113

    Google Scholar 

  78. Perrault GG (1974) The potential-pH diagram of the magnesium-water system. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 51(1):107–119

    Article  CAS  Google Scholar 

  79. Salman SAE, Corrosion protection of magnesium alloys with anodizing and conversion coating. 2010, Nagoya University

    Google Scholar 

  80. Nassif N and Ghayad I (2013) Corrosion Protection and Surface Treatment of Magnesium Alloys Used for Orthopedic Applications. Advances in Materials Science and Engineering 2013:532896

    Article  Google Scholar 

  81. Hiromoto S, Shishido T, Yamamoto A, Maruyama N, Somekawa H, and Mukai T (2008) Precipitation control of calcium phosphate on pure magnesium by anodization. Corrosion Science 50(10):2906–2913

    Article  CAS  Google Scholar 

  82. Kuwahara H, Al-Abdullat Y, Mazaki N, Tsutsumi S, and Aizawa T (2001) Precipitation of Magnesium Apatite on Pure Magnesium Surface during Immersing in Hank’s Solution. Materials Transactions 42(7):1317–1321

    Article  CAS  Google Scholar 

  83. Cipriano A, Lin J, Miller C, Lin A, Alcaraz M, Soria P, and Liu H (2017) Anodization of magnesium for biomedical applications - Processing, characterization, degradation and cytocompatibility. Acta Biomaterialia 62:397–417

    Article  CAS  Google Scholar 

  84. Kalaiyarasan M, Saranya K, and Rajendran N (2020) In-vitro corrosion assessment of silicate-coated AZ31 Mg alloy in Earle’s solution. Journal of Materials Science 55(8):3571–3587

    Article  CAS  Google Scholar 

  85. Zaffora A, Di Franco F, Virtu D, Pavia F, Ghersi G, Virtanen S, and Santamaria M (2021) Tuning of the Mg Alloy AZ31 Anodizing Process for Biodegradable Implants. Acs Applied Materials & Interfaces 13(11):12866–12876

    Article  CAS  Google Scholar 

  86. Cai J, Cao F, Chang L, Zheng J, Zhang J, and Cao C (2011) The preparation and corrosion behaviors of MAO coating on AZ91D with rare earth conversion precursor film. Applied Surface Science 257(8):3804–3811

    Article  CAS  Google Scholar 

  87. Malayoglu U, Tekin K, and Shrestha S (2010) Influence of post-treatment on the corrosion resistance of PEO coated AM50B and AM60B Mg alloys. Surface & Coatings Technology 205(6):1793–1798

    Article  CAS  Google Scholar 

  88. Zheng Q, Sun Z, Wang Z, Duan T, Xu K, Cai M, and Wang B (2021) Corrosion and biocompatibility behaviours of microarc oxidation/phytic acid coated magnesium alloy clips for use in cholecystectomy in a rabbit model. Rsc Advances 11(34):20730–20736

    Article  CAS  Google Scholar 

  89. Lin X, Tan L, Zhang Q, Yang K, Hu Z, Qiu J, and Cai Y (2013) The in vitro degradation process and biocompatibility of a ZK60 magnesium alloy with a forsterite-containing micro-arc oxidation coating. Acta Biomaterialia 9(10):8631–8642

    Article  CAS  Google Scholar 

  90. Hick A (1991) SURFACE ENGINEERING AND HEAT-TREATMENT – PAST, PRESENT AND FUTURE. Heat Treatment of Metals 18(1):17–18

    Google Scholar 

  91. Mattox D (2010) Handbook of Physical Vapor Deposition (PVD) Processing, 2nd Edition. Handbook of Physical Vapor Deposition (Pvd) Processing, 2nd Edition:1–746

    Google Scholar 

  92. Hamdy A, Hamdyf A, and I T (2011) Current and advanced coating technologies for industrial applications. Nanocoatings and Ultra-Thin Films: Technologies and Applications:3–23

    Google Scholar 

  93. H. F, Applications and developments of thin film technology, in Handbook of thin-film technology, KHR Frey H., Editor. 2015, Springer Berlin, Heidelberg.

    Google Scholar 

  94. Bakhsheshi-Rad H, Najafinezhad A, Hamzah E, Ismail A, Berto F, and Chen X (2020) Clinoenstatite/Tantalum coating for enhancement of biocompatibility and corrosion protection of Mg alloy. Journal of Functional Biomaterials 11(2)

    Google Scholar 

  95. Zhao Y, Jamesh M, Li W, Wu G, Wang C, Zheng Y, Yeung K, and Chu P (2014) Enhanced antimicrobial properties, cytocompatibility, and corrosion resistance of plasma-modified biodegradable magnesium alloys. Acta Biomaterialia 10(1):544–556

    Article  CAS  Google Scholar 

  96. Jin W, Wu G, Feng H, Wang W, Zhang X, and Chu P (2015) Improvement of corrosion resistance and biocompatibility of rare-earth WE43 magnesium alloy by neodymium self-ion implantation. Corrosion Science 94:142–155

    Article  CAS  Google Scholar 

  97. Liu Y, Bian D, Wu Y, Li N, Qiu K, Zheng Y, and Han Y (2015) Influence of biocompatible metal ions (Ag, Fe, Y) on the surface chemistry, corrosion behavior and cytocompatibility of Mg-1Ca alloy treated with MEVVA. Colloids and Surfaces B-Biointerfaces 133:99–107

    Article  CAS  Google Scholar 

  98. Song Y, Zhang S, Li J, Zhao C, and Zhang X (2010) Electrodeposition of Ca-P coatings on biodegradable Mg alloy: In vitro biomineralization behavior. Acta Biomaterialia 6(5):1736–1742

    Article  CAS  Google Scholar 

  99. Salman S, Kuroda K, and Okido M (2013) Preparation and Characterization of Hydroxyapatite Coating on AZ31 Mg Alloy for Implant Applications. Bioinorganic Chemistry and Applications 2013

    Google Scholar 

  100. Škugor Rončević I, Vladislavić N, Buzuk M, and Buljac M (2019) Electrodeposition of hydroxyapatite coating on Mg alloy modified with organic acid self-assembled monolayers. Journal of Chemical Research 44(3–4):212–220

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Salman, S., Gouda, M.K. (2023). Biodegradable Mg Alloys for Orthopedic Implant Materials. In: Ali, G.A.M., Makhlouf, A.S.H. (eds) Handbook of Biodegradable Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-09710-2_40

Download citation

Publish with us

Policies and ethics