Skip to main content

Material Programming for Bio-inspired and Bio-based Hygromorphic Building Envelopes

  • Chapter
  • First Online:
Advanced Materials in Smart Building Skins for Sustainability

Abstract

Building skins play a decisive role in maintaining occupant comfort. Adaptive building skins have been proposed to adjust to the weather, with mechanically complex multi-component solutions that require operating energy. Nature and its materials exhibit a fundamentally different strategy for environmental responsiveness; motile plant systems show entirely passive, integrative, hygroscopic actuation due to their cellulose-based material structure. Through a design and fabrication process we refer to as material programming, a bio-inspired and bio-based functional integration of actuator, sensor, and controller can be achieved. We present an overview of related research on weather responsive building components. Wood-based composite elements that respond to relative humidity without operational energy have been demonstrated at architectural-scale. This research was recently expanded through the additive manufacturing of custom-made natural fiber composites, allowing 4D-printed self-shaping compliant mechanisms based on highly differentiated and multifunctional plant movements with varying mechanical stiffnesses and actuation speeds. The application of 4D-printing to weather responsive shading systems still necessitates the codesign of materials, mechanism, and façade system as well as matching stimuli-responsiveness to ambient weather conditions and mass production at the scale of buildings. Overcoming these challenges will enable a more reliable, sustainable, and zero-energy solution for regulating comfort in the built environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbar, Z., Wood, D., Kiesewetter, L., Menges, A., & Wortmann, T. (2022). A data-driven workflow for modelling self-shaping wood bilayer utilizing natural material variations with machine vision and machine learning. CAADRIA 2022-POST-CARBON. Sydney, Australia.

    Google Scholar 

  • Burgert, I., & Fratzl, P. (2009). Actuation systems in plants as prototypes for bioinspired devices. Philosophical Transactions of the Royal Society A, 367(1893), 1541–1557.

    Article  Google Scholar 

  • Carneiro, V. H., Meireles, J., & Puga, H. (2013). Auxetic materials – A review. Materials Science-Poland, 31(4), 561–571.

    Article  Google Scholar 

  • Cheng, T., Tahouni, Y., Wood, D., Stolz, B., Mülhaupt, R., & Menges, A. (2020). Multifunctional mesostructures: Design and material programming for 4D-printing. In Symposium on Computational Fabrication (pp. 1–10). New York, NY, USA: ACM.

    Google Scholar 

  • Cheng, T., Thielen, M., Poppinga, S., Tahouni, Y., Wood, D., Steinberg, T., Menges, A., & Speck, T. (2021). Bio‐inspired motion mechanisms: Computational design and material programming of self‐adjusting 4D‐printed wearable systems. Advanced Science, 8(13), 2100411.

    Google Scholar 

  • Correa, D., & Menges, A. (2017). Fused filament fabrication for multi-kinematic-state climate-responsive aperture. In A. Menges, B. O. Sheil, R. Glynn & M. Skavara (Eds.), Fabricate (pp. 190–195). UCL Press.

    Google Scholar 

  • Correa, D., Papadopoulou, A., Guberan, C., Jhaveri, N., Reichert, S., Menges, A., & Tibbits, S. (2015). 3D-Printed Wood: Programming Hygroscopic Material Transformations. 3D Printing and Additive Manufacturing, 2(3), 106–116.

    Google Scholar 

  • Correa, D., Poppinga, S., Mylo, M. D., Westermeier, A. S., Bruchmann, B., Menges, A., & Speck, T. (2020). 4D pine scale: Biomimetic 4D printed autonomous scale and flap structures capable of multi-phase movement, Philosophical transactions. Series A, Mathematical, Physical, and Engineering Sciences, 378(2167), 20190445.

    Google Scholar 

  • Davidova, M. (2016). Wood as a primary medium to architectural performance: A case study in performance oriented architecture approached through systems oriented design. Technical University of Liberec.

    Google Scholar 

  • Dawson, C., Vincent, J. F. V., & Rocca, A.-M. (1997). How pine cones open. Nature, 390(6661), 668.

    Article  Google Scholar 

  • Duro-Royo, J., Mogas-Soldevila, L., & Oxman, N. (2015). Flow-based fabrication: An integrated computational workflow for design and digital additive manufacturing of multifunctional heterogeneously structured objects. Computer-Aided Design, 69, 143–154.

    Article  Google Scholar 

  • Erb, R. M., Sander, J. S., Grisch, R., & Studart, A. R. (2013). Self-shaping composites with programmable bioinspired microstructures. Nature Communications, 4(1), 1–8.

    Article  Google Scholar 

  • Grondzik, W. T., & Kwok, A. G. (2020). Mechanical and electrical equipment for buildings. Hoboken, New Jersey: Wiley.

    Google Scholar 

  • Grönquist, P., Wittel, F. K., & Rüggeberg, M. (2018). Modeling and design of thin bending wooden bilayers. PLoS ONE, 13(10), e0205607.

    Article  Google Scholar 

  • Harlow, W. M., Côté, W. A., & Day, A. C. (1964). The opening mechanism of pine cone scales. Journal of Forestry, 62(8), 538–540.

    Article  Google Scholar 

  • Hoadley, R. B., & Barbara, L. H, E. o. (2000). Understanding wood: A Craftsman's guide to wood technology. Taunton Press.

    Google Scholar 

  • Holstov, A., Farmer, G., & Bridgens, B. (2017). Sustainable Materialisation of Responsive Architecture. Sustainability, 9(3), 435 [Online]. https://doi.org/10.3390/su9030435.

  • Jung, W., Kim, W., & Kim, H.-Y. (2014). Self-burial mechanics of hygroscopically responsive awns. Integrative and Comparative Biology, 54(6), 1034–1042.

    Article  Google Scholar 

  • Kliem, S., Tahouni, Y., Cheng, T., Menges, A., & Bonten, C. (2020). Biobased smart materials for processing via fused layer modeling. Fracture and damage mechanics: Theory, simulation and experiment (p. 20034). Mallorca, Spain: AIP Publishing.

    Google Scholar 

  • Krieg, O. D., Christian, Z., Correa, D., Menges, A., Reichert, S., Rinderspacher, K. and Schwinn, T. (2017). Hygroskin: Meteorosensitive Pavilion. In F. Gramazio, M. Kohler & S. Langenberg (Eds.). Fabricate (pp. 272–279) UCL Press.

    Google Scholar 

  • Langhansl, M., Dörrstein, J., Hornberger, P., & Zollfrank, C. (2021). Fabrication of 3D-printed hygromorphs based on different cellulosic fillers. Functional Composite Materials, 2(1), 1–8.

    Article  Google Scholar 

  • Le Duigou, A., Correa, D., Ueda, M., Matsuzaki, R., & Castro, M. (2020). A review of 3D and 4D printing of natural fibre biocomposites. Materials and Design, 194, 108911.

    Article  Google Scholar 

  • Menges, A., & Reichert, S. (2015). Performative wood: Physically programming the responsive architecture of the hygroscope and hygroskin projects. Architectural Design, 85(5), 66–73.

    Article  Google Scholar 

  • Morin, M., Gaudreault, J., Brotherton, E., Paradis, F., Rolland, A., Wery, J., & Laviolette, F. (2020). Machine learning-based models of sawmills for better wood allocation planning. International Journal of Production Economics, 222, 107508.

    Article  Google Scholar 

  • Oxman, N. (2010). Structuring materiality: Design fabrication of heterogeneous materials. Architectural Design, 80(4), 78–85.

    Article  Google Scholar 

  • Poppinga, S., Nestle, N., Šandor, A., Reible, B., Masselter, T., Bruchmann, B., & Speck, T. (2017). Hygroscopic motions of fossil conifer cones. Scientific Reports, 7, 40302.

    Article  Google Scholar 

  • Poppinga, S., Zollfrank, C., Prucker, O., Rühe, J., Menges, A., Cheng, T., & Speck, T. (2018). Toward a new generation of smart biomimetic actuators for architecture. Advanced Materials, 30(19), e1703653.

    Article  Google Scholar 

  • Reichert, S., Menges, A., & Correa, D. (2015). Meteorosensitive architecture: Biomimetic building skins based on materially embedded and hygroscopically enabled responsiveness. Computer-Aided Design, 60, 50–69.

    Article  Google Scholar 

  • Reyssat, E., & Mahadevan, L. (2009). Hygromorphs: From pine cones to biomimetic bilayers. Journal of the Royal Society, Interface, 6(39), 951–957.

    Article  Google Scholar 

  • Rüggeberg, M., & Burgert, I. (2015). Bio-inspired wooden actuators for large scale applications. PLOS ONE, 10(3), e0120718 [Online]. https://doi.org/10.1371/journal.pone.0120718.

  • Sanandiya, N. D., Ottenheim, C., Phua, J. W., Caligiani, A., Dritsas, S., & Fernandez, J. G. (2020). Circular manufacturing of chitinous bio-composites via bioconversion of urban refuse. Scientific Reports, 10(1), 4632.

    Article  Google Scholar 

  • Tabadkani, A., Roetzel, A., Li, H. X., & Tsangrassoulis, A. (2021). Design approaches and typologies of adaptive facades: A review. Automation in Construction, 121, 103450.

    Article  Google Scholar 

  • Tahouni, Y., Cheng, T., Wood, D., Sachse, R., Thierer, R., Bischoff, M., & Menges, A. (2020). Self-shaping curved folding. In Symposium on Computational Fabrication (pp. 1–11). New York, NY, USA: ACM.

    Google Scholar 

  • Tahouni, Y., Krüger, F., Poppinga, S., Wood, D., Pfaff, M., Rühe, J., Speck, T., & Menges, A. (2021). Programming sequential motion steps in 4D-printed hygromorphs by architected mesostructure and differential hygro-responsiveness. Bioinspiration and biomimetics, 16(5).

    Google Scholar 

  • Tamke, M., Gatz, S., Svilans, T., & Ramsgard Thomsen, M. (2021). Tree to Product-Prototypical workflow connecting Data from tree with fabrication of engineered wood structure-RawLam, WCTE 2021. Santiago.

    Google Scholar 

  • Timoshenko, S. (1925). Analysis of bi-metal thermostats. Journal of the Optical Society of America, 11(3), 233.

    Article  Google Scholar 

  • United Nations Environment Programme. (2020). Global status report for buildings and construction: Towards a zero-emission, efficient and resilient buildings and construction sector.

    Google Scholar 

  • Vailati, C., Bachtiar, E., Hass, P., Burgert, I., & Rüggeberg, M. (2018). An autonomous shading system based on coupled wood bilayer elements. Energy and Buildings, 158(9), 1013–1022.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dylan Wood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wood, D., Cheng, T., Tahouni, Y., Menges, A. (2023). Material Programming for Bio-inspired and Bio-based Hygromorphic Building Envelopes. In: Wang, J., Shi, D., Song, Y. (eds) Advanced Materials in Smart Building Skins for Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-031-09695-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09695-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09694-5

  • Online ISBN: 978-3-031-09695-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics