Skip to main content

Multi-objective Evolutionary Ensemble Learning for Disease Classification

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13344))

Included in the following conference series:

Abstract

Ensemble learning (EL) is a paradigm, involving several base learners working together to solve complex problems. The performance of the EL highly relies on the number and accuracy of weak learners, which are often hand-crafted by domain knowledge. Unfortunately, such knowledge is not always available to interested end-user. This paper proposes a novel approach to automatically select optimal type and number of base learners for disease classification, called Multi-Objective Evolutionary Ensemble Learning (MOE-EL). In the proposed MOE-EL algorithm, a variable-length gene encoding strategy of the multi-objective algorithm is first designed to search for the weak learner optimal configurations. Moreover, a dynamic population strategy is proposed to speed up the evolutionary search and balance the diversity and convergence of populations. The proposed algorithm is examined and compared with 5 existing algorithms on disease classification tasks, including the state-of-the-art methods. The experimental results show the significant superiority of the proposed approach over the state-of-the-art designs in terms of classification accuracy rate and base learner diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sagi, O., Rokach, L.: Ensemble learning: a survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 8(4), e1249 (2018)

    Article  Google Scholar 

  2. Cervantes, J., Garcia-Lamont, F., Rodríguez-Mazahua, L., et al.: A comprehensive survey on support vector machine classification: applications, challenges and trends. Neurocomputing 408, 189–215 (2020)

    Article  Google Scholar 

  3. Chen, S., Webb, G.I., Liu, L., et al.: A novel selective naïve Bayes algorithm. Knowl.-Based Syst. 192, 105361 (2020)

    Article  Google Scholar 

  4. Heidari, A.A., Faris, H., Mirjalili, S., et al.: Ant lion optimizer: theory, literature review, and application in multi-layer perceptron neural networks. Nat.-Inspired Optim. 23–46 (2020)

    Google Scholar 

  5. Zhou, K., Yang, Y., Qiao, Y., et al.: Domain adaptive ensemble learning. IEEE Trans. Image Process. 30, 8008–8018 (2021)

    Article  Google Scholar 

  6. Zhou, Z.-H.: Ensemble learning. In: Machine Learning, pp. 181–210. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-1967-3_8

  7. Bi, Y., Xue, B., Zhang, M.: An automated ensemble learning framework using genetic programming for image classification. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 365–373 (2019)

    Google Scholar 

  8. Ma, L., Huang, M., Yang, S., et al.: An adaptive localized decision variable analysis approach to large-scale multiobjective and many-objective optimization. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2020.3041212

    Article  Google Scholar 

  9. Ma, L., Li, N., Guo, Y., et al.: Learning to optimize: reference vector reinforcement learning adaption to constrained many-objective optimization of industrial copper burdening system. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2021.3086501

  10. Ma, L., Wang, X., Huang, M., et al.: Two-level master–slave RFID networks planning via hybrid multiobjective artificial bee colony optimizer. IEEE Trans. Syst. Man Cybern. Syst. 49(5), 861–880 (2019)

    Article  Google Scholar 

  11. Zhang, S., Chen, Y., Zhang, W., et al.: A novel ensemble deep learning model with dynamic error correction and multi-objective ensemble pruning for time series forecasting. Inf. Sci. 544, 427–445 (2021)

    Article  MathSciNet  Google Scholar 

  12. Ma, M., Sun, C., Mao, Z., et al.: Ensemble deep learning with multi-objective optimization for prognosis of rotating machinery. ISA Trans. 113, 166–174 (2021)

    Article  Google Scholar 

  13. Zhang, C., Sun, J.H., Tan, K.C.: Deep belief networks ensemble with multi-objective optimization for failure diagnosis. In: 2015 IEEE International Conference on Systems, Man, and Cybernetics, pp. 32–37. IEEE (2015)

    Google Scholar 

  14. Chandra, A., Yao, X.: Ensemble learning using multi-objective evolutionary algorithms. J. Math. Model. Algorithms 5(4), 417–445 (2006)

    Article  MathSciNet  Google Scholar 

  15. Deb, K.: Multi-objective evolutionary algorithms. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer handbook of computational intelligence, pp. 995–1015. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-43505-2_49

    Chapter  Google Scholar 

  16. Deb, K., Pratap, A., Agarwal, S., et al.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  17. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  18. Xue, Y., Li, Y.F.: Multi-objective integer programming approaches for solving optimal feature selection problem: a new perspective on multi-objective optimization problems in SBSE. In: Proceedings of the 40th International Conference on Software Engineering, pp. 1231–1242 (2018)

    Google Scholar 

  19. Ma, L., Li, N., Yu, G., et al.: How to simplify search: classification-wise pareto evolution for one-shot neural architecture search. arXiv preprint arXiv:2109.07582 (2021)

  20. Karagoz, G.N., Yazici, A., Dokeroglu, T., et al.: A new framework of multi-objective evolutionary algorithms for feature selection and multi-label classification of video data. Int. J. Mach. Learn. Cybern. 12(1), 53–71 (2021)

    Article  Google Scholar 

  21. Chu, X., Zhang, B., Xu, R.: Multi-objective reinforced evolution in mobile neural architecture search. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12538, pp. 99–113. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66823-5_6

    Chapter  Google Scholar 

  22. Wang, X., Hu, T., Tang, L.: A multiobjective evolutionary nonlinear ensemble learning with evolutionary feature selection for silicon prediction in blast furnace. IEEE Trans. Neural Netw. Learn. Syst. 33, 2080–2093 (2021)

    Article  Google Scholar 

  23. Oza, N.C., Russell, S.: Online Ensemble Learning. University of California, Berkeley (2001)

    Google Scholar 

  24. Krawczyk, B., Minku, L.L., Gama, J., et al.: Ensemble learning for data stream analysis: a survey. Inf. Fusion 37, 132–156 (2017)

    Article  Google Scholar 

  25. Zhang, Y., Jin, X.: An automatic construction and organization strategy for ensemble learning on data streams. ACM SIGMOD Rec. 35(3), 28–33 (2006)

    Article  Google Scholar 

  26. Zhang, X.: Automatic ensemble learning for online influence maximization. arXiv preprint arXiv:1911.10728 (2019)

  27. Sun, Y., Xue, B., Zhang, M., et al.: Evolving deep convolutional neural networks for image classification. IEEE Trans. Evol. Comput. 24(2), 394–407 (2019)

    Article  Google Scholar 

  28. Abdollahi, J., Nouri-Moghaddam, B.: Hybrid stacked ensemble combined with genetic algorithms for prediction of diabetes. arXiv preprint arXiv:2103.08186 (2021)

  29. Ma, L., Cheng, S., Shi, Y.: Enhancing learning efficiency of brain storm optimization via orthogonal learning design. IEEE Trans. Syst. Man Cybern. Syst. 51(11), 6723–6742 (2020)

    Article  Google Scholar 

  30. Ma, L., Wang, X., Wang, X., et al.: TCDA: truthful combinatorial double auctions for mobile edge computing in industrial Internet of Things. IEEE Trans. Mob. Comput. (2021). https://doi.org/10.1109/TMC.2021.3064314

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianbo Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, N., Ma, L., Zhang, T., He, M. (2022). Multi-objective Evolutionary Ensemble Learning for Disease Classification. In: Tan, Y., Shi, Y., Niu, B. (eds) Advances in Swarm Intelligence. ICSI 2022. Lecture Notes in Computer Science, vol 13344. Springer, Cham. https://doi.org/10.1007/978-3-031-09677-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09677-8_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09676-1

  • Online ISBN: 978-3-031-09677-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics