Skip to main content
  • 308 Accesses

Abstract

Proteins and peptides are engineered for highly specific recognition of tumors and have successfully translated to clinical therapies. Due to their specificity, these modalities were adapted to help with tumor detection and imaging. The approvals of Bexxar®, Verluma®, and Protascint® validate these modalities for tumor imaging, with many currently under clinical evaluation. This chapter aims to (1) present the reader with a summary of imagining technologies that are currently being utilized with protein and peptides, (2) describe clinically approved imaging technologies utilizing these modalities, (3) compare and contrast this modality with other clinically approved imaging techniques utilizing particle and polymer technologies, and (4) discuss the future of this powerful technology to help cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Cancer Society. Cancer facts & figures 2021. Atlanta; 2021.

    Google Scholar 

  2. Meek RD, Mills MK, Hanrahan CJ, Beckett BR, Leake RL, Allen H, et al. Pearls and pitfalls for soft-tissue and bone biopsies: a cross-institutional review. RadioGraphics [Internet]. Radiological Society of North America; 2020; 40:266–90. Available from: https://doi.org/10.1148/rg.2020190089.

  3. Ziv E, Durack JC, Solomon SB. The importance of biopsy in the era of molecular medicine. Cancer J [Internet]. 2016;22:418–22. Available from: https://pubmed.ncbi.nlm.nih.gov/27870685

    Article  CAS  Google Scholar 

  4. Fass L. Imaging and cancer: a review. Mol Oncol [Internet]. 2008/05/10. Wiley. 2008; 2:115–52. Available from: https://pubmed.ncbi.nlm.nih.gov/19383333

  5. Frangioni JV. New technologies for human cancer imaging. J Clin Oncol [Internet]. Am Soc Clin Oncol. 2008; 26:4012–21. Available from: https://pubmed.ncbi.nlm.nih.gov/18711192

  6. Heldin C-H, Rubin K, Pietras K, Östman A. High interstitial fluid pressure – an obstacle in cancer therapy. Nat Rev Cancer [Internet]. 2004;4:806–13. Available from: https://doi.org/10.1038/nrc1456.

  7. Aluri S, Janib SM, Mackay JA. Environmentally responsive peptides as anticancer drug carriers. Adv Drug Deliv Rev [Internet]. 2009/07/20. 2009;61:940–52. Available from: https://pubmed.ncbi.nlm.nih.gov/19628014

  8. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Rel [Internet]. 2000;65:271–84. Available from: https://www.sciencedirect.com/science/article/pii/S0168365999002485

  9. Padma VV. An overview of targeted cancer therapy. Biomedicine (Taipei) [Internet]. 2015/11/28. China Medical University; 2015; 5:19. Available from: https://pubmed.ncbi.nlm.nih.gov/26613930

  10. Jeong W, Bu J, Kubiatowicz LJ, Chen SS, Kim Y, Hong S. Peptide–nanoparticle conjugates: a next generation of diagnostic and therapeutic platforms? Nano Convergence [Internet]. 2018; 5:38. Available from: https://doi.org/10.1186/s40580-018-0170-1.

  11. Vargason AM, Anselmo AC, Mitragotri S. The evolution of commercial drug delivery technologies. Nature Biomed Eng [Internet]. 2021; 5:951–67. Available from: https://doi.org/10.1038/s41551-021-00698-w.

  12. Lento PH, Primack S. Advances and utility of diagnostic ultrasound in musculoskeletal medicine. Curr Rev Musculoskelet Med [Internet] Humana Press Inc. 2008;1:24–31. Available from: https://pubmed.ncbi.nlm.nih.gov/19468895

    Article  Google Scholar 

  13. Berger A. Magnetic resonance imaging. BMJ [Internet]. 2002;324:35. Available from: https://pubmed.ncbi.nlm.nih.gov/11777806

    Article  Google Scholar 

  14. Israel O, Pellet O, Biassoni L, de Palma D, Estrada-Lobato E, Gnanasegaran G, et al. Two decades of SPECT/CT – the coming of age of a technology: an updated review of literature evidence. Eur J Nucl Med Mol Imaging [Internet]. 2019/07/04. Springer, Berlin Heidelberg. 2019;46:1990–2012. Available from: https://pubmed.ncbi.nlm.nih.gov/31273437

    Article  Google Scholar 

  15. Hadjipanayis CG, Jiang H, Roberts DW, Yang L. Current and future clinical applications for optical imaging of cancer: from intraoperative surgical guidance to cancer screening. Semin Oncol [Internet]. 2011;38:109–18. Available from: https://pubmed.ncbi.nlm.nih.gov/21362519

    Article  Google Scholar 

  16. Kaur S, Venktaraman G, Jain M, Senapati S, Garg PK, Batra SK. Recent trends in antibody-based oncologic imaging. Cancer Lett [Internet]. 2011/10/20. 2012; 315:97–111. Available from: https://pubmed.ncbi.nlm.nih.gov/22104729

  17. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature [Internet]. 2000; 407:249–57. Available from: https://doi.org/10.1038/35025220.

  18. Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 1995;55:3752–6.

    CAS  Google Scholar 

  19. Yuan F, Leunig M, Huang SK, Berk DA, Papahadjopoulos D, Jain RK. Mirovascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res. 1994;54:3352–6.

    CAS  Google Scholar 

  20. Kobayashi H, Watanabe R, Choyke PL. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics [Internet] Ivyspring International Publisher. 2013;4:81–9. Available from: https://pubmed.ncbi.nlm.nih.gov/24396516

    Google Scholar 

  21. Nakamura Y, Mochida A, Choyke PL, Kobayashi H. Nanodrug Delivery: Is the Enhanced Permeability and Retention Effect Sufficient for Curing Cancer? Bioconjug Chem [Internet]. 2016/09/02. 2016; 27:2225–38. Available from: https://pubmed.ncbi.nlm.nih.gov/27547843

  22. Wadih A, Renata P, Erkki R. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science (1979) [Internet]. American Association for the Advancement of Science; 1998; 279:377–80. Available from: https://doi.org/10.1126/science.279.5349.377.

  23. Blue Earth Diagnostics Ltd. Axumin. Package Insert. 2021.

    Google Scholar 

  24. The Feinstein Institute for Medical Research. Fludeoxyglucose F-18 Injection. Package Insert. 2010.

    Google Scholar 

  25. Iso-Tex Diagnostics Inc. Megatope. Package Insert. 2020.

    Google Scholar 

  26. Bayer Healthcare. Gadavist. Package Insert. 2011.

    Google Scholar 

  27. Bracco Diagnostics Inc. ProHance. Package Insert. 2013.

    Google Scholar 

  28. Akorn Inc. IC-GREEN. Package Insert. 2015.

    Google Scholar 

  29. Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun [Internet]. 2018; 9:1410. Available from: https://doi.org/10.1038/s41467-018-03705-y.

  30. Joshi BP, Wang TD. Targeted optical imaging agents in cancer: focus on clinical applications. Contrast Media Mol Imaging [Internet]. Hindawi; 2018; 2018:2015237. Available from: https://pubmed.ncbi.nlm.nih.gov/30224903

  31. Subhan MA, Yalamarty SSK, Filipczak N, Parveen F, Torchilin VP. Recent advances in tumor targeting via EPR effect for cancer treatment. J Pers Med [Internet]. MDPI; 2021; 11:571. Available from: https://pubmed.ncbi.nlm.nih.gov/34207137

  32. Davda J, Declerck P, Hu-Lieskovan S, Hickling TP, Jacobs IA, Chou J, et al. Immunogenicity of immunomodulatory, antibody-based, oncology therapeutics. J Immuno Therapy Cancer [Internet]. 2019; 7:105. Available from: https://doi.org/10.1186/s40425-019-0586-0.

  33. Li R, Zheng K, Yuan C, Chen Z, Huang M. Be active or not: the relative contribution of active and passive tumor targeting of nanomaterials. Nanotheranostics [Internet] Ivyspring International Publisher. 2017;1:346–57. Available from: https://pubmed.ncbi.nlm.nih.gov/29071198

    Google Scholar 

  34. GlaxoSmithKline. Bexxar. Package Insert. 2012.

    Google Scholar 

  35. University of California LA. Gallium Ga-68 PSMA-11 Injection. Package Insert. 2020.

    Google Scholar 

  36. Cardinal Health. Lymphoseek. Package Insert. 2021;

    Google Scholar 

  37. Gipharma S.r.l/Advanced Accelerator Applications. Netspot. Package Insert. 2016.

    Google Scholar 

  38. Curium US LLC. Octreoscan. Package Insert. 2022.

    Google Scholar 

  39. EUSA Pharma. ProtaScint. Package Insert. 2012.

    Google Scholar 

  40. Boehringer Ingelheim. Verluma. Package Insert 1996.

    Google Scholar 

  41. Spectrum Pharmaceuticals. Zevalin. Package Insert. 2018.

    Google Scholar 

  42. Scodeller P, Asciutto EK. Targeting tumors using peptides. Molecules [Internet]. MDPI; 2020; 25:808. Available from: https://pubmed.ncbi.nlm.nih.gov/32069856

  43. Attarwala H. Role of antibodies in cancer targeting. J Nat Sci Biol Med [Internet]. Medknow Publications Pvt Ltd; 2010; 1:53–56. Available from: https://pubmed.ncbi.nlm.nih.gov/22096337

  44. Sudhan DR, Siemann DW. Cathepsin L targeting in cancer treatment. Pharmacology & Therapeutics [Internet]. 2015;155:105–16. Available from: https://www.sciencedirect.com/science/article/pii/S0163725815001655

    Article  CAS  Google Scholar 

  45. Ruan H, Hao S, Young P, Zhang H. Targeting Cathepsin B for cancer therapies. Horiz Cancer Res [Internet]. 2015;56:23–40. Available from: https://pubmed.ncbi.nlm.nih.gov/26623174

    CAS  Google Scholar 

  46. Tan G-J, Peng Z-K, Lu J-P, Tang F-Q. Cathepsins mediate tumor metastasis. World J Biol Chem [Internet]. Baishideng Publishing Group Co Limited. 2013;4:91–101. Available from: https://pubmed.ncbi.nlm.nih.gov/24340132

    Google Scholar 

  47. Pavlasova G, Mraz M. The regulation and function of CD20: an “enigma” of B-cell biology and targeted therapy. Haematologica [Internet]. 2020; 105:1494–506. Available from: https://haematologica.org/article/view/9425

  48. Marshall MJE, Stopforth RJ, Cragg MS. Therapeutic antibodies: what have we learnt from targeting CD20 and where are we going? Front Immunol [Internet]. 2017;8. Available from: https://www.frontiersin.org/article/10.3389/fimmu.2017.01245

  49. Cragg MS, Walshe CA, Ivanov AO, Glennie MJ. The biology of CD20 and its potential as a target for mAb therapy. Curr Direct Autoimmun [Internet]. 2005. p. 140–74. Available from: https://www.karger.com/DOI/10.1159/000082102

  50. Nassiri F, Cusimano MD, Scheithauer BW, Rotondo F, Fazio A, Yousef GM, et al. Endoglin (CD105): a review of its role in angiogenesis and tumor diagnosis, progression and therapy. Anticancer Res [Internet]. 2011;31:2283. Available from: http://ar.iiarjournals.org/content/31/6/2283.abstract

  51. González Muñoz T, Amaral AT, Puerto-Camacho P, Peinado H, de Álava E. Endoglin in the Spotlight to Treat Cancer. Int J Mol Sci [Internet]. MDPI; 2021; 22:3186. Available from: https://pubmed.ncbi.nlm.nih.gov/33804796

  52. Sasaki T, Hiroki K, Yamashita Y. The role of epidermal growth factor receptor in cancer metastasis and microenvironment. In Vigetti D, editors. BioMed Research International [Internet]. Hindawi Publishing Corporation; 2013; 2013:546318. Available from: https://doi.org/10.1155/2013/546318.

  53. Cai W-Q, Zeng L-S, Wang L-F, Wang Y-Y, Cheng J-T, Zhang Y, et al. The latest battles between EGFR monoclonal antibodies and resistant tumor cells. Front Oncol [Internet]. 2020;10. Available from: https://www.frontiersin.org/article/10.3389/fonc.2020.01249

  54. Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer. Mol Oncol [Internet]. 2017/11/27. John Wiley and Sons Inc.; 2018; 12:3–20. Available from: https://pubmed.ncbi.nlm.nih.gov/29124875

  55. Imrich S, Hachmeister M, Gires O. EpCAM and its potential role in tumor-initiating cells. Cell Adh Migr [Internet] Landes Bioscience. 2012;6:30–8. Available from: https://pubmed.ncbi.nlm.nih.gov/22647938

    Article  Google Scholar 

  56. Sasaki T, Hiroki K, Yamashita Y. The Role of Epidermal Growth Factor Receptor in Cancer Metastasis and Microenvironment. Vigetti D, editor. BioMed Research International [Internet]. Hindawi Publishing Corporation; 2013; 2013:546318. Available from: https://doi.org/10.1155/2013/546318.

  57. Harjes U. E-selectin fills two needs for metastasis. Nat Rev Cancer [Internet]. 2019; 19:301. Available from: https://doi.org/10.1038/s41568-019-0151-7.

  58. Burdick M, Henson K, Delgadillo L, Choi YE, Goetz D, Tees D, et al. Expression of E-selectin ligands on circulating tumor cells: cross-regulation with cancer stem cell regulatory pathways? Front Oncol [Internet]. 2012;2. Available from: https://www.frontiersin.org/article/10.3389/fonc.2012.00103

  59. Simpson-Haidaris PJ, Rybarczyk B. Tumors and fibrinogen. Ann N Y Acad Sci [Internet]. John Wiley & Sons, Ltd; 2001;936:406–25. Available from: https://doi.org/10.1111/j.1749-6632.2001.tb03525.x.

  60. Palumbo JS, Kombrinck KW, Drew AF, Grimes TS, Kiser JH, Degen JL, et al. Fibrinogen is an important determinant of the metastatic potential of circulating tumor cells. Blood [Internet]. 2000; 96:3302–9. Available from: https://doi.org/10.1182/blood.V96.10.3302.

  61. Adekola K, Rosen ST, Shanmugam M. Glucose transporters in cancer metabolism. Curr Opin Oncol [Internet]. 2012;24:650–4. Available from: https://pubmed.ncbi.nlm.nih.gov/22913968

    Article  CAS  Google Scholar 

  62. Anan N, Zainon R, Tamal M. A review on advances in 18F-FDG PET/CT radiomics standardisation and application in lung disease management. Insights Imag [Internet]. 2022; 13:22. Available from: https://doi.org/10.1186/s13244-021-01153-9.

  63. Mochizuki T, Tsukamoto E, Kuge Y, Kanegae K, Zhao S, Hikosaka K, et al. FDG uptake and glucose transporter subtype expressions in experimental tumor and inflammation models. J Nuclear Med [Internet]. 2001;42:1551. Available from: http://jnm.snmjournals.org/content/42/10/1551.abstract

  64. Bergonzini C, Kroese K, Zweemer AJM, Danen EHJ. Targeting integrins for cancer therapy – disappointments and opportunities. Front Cell Develop Biol [Internet]. 2022;10. Available from: https://www.frontiersin.org/article/10.3389/fcell.2022.863850

  65. Millard M, Odde S, Neamati N. Integrin targeted therapeutics. Theranostics [Internet], Ivyspring International Publisher; 2011; 1:154–188. Available from: https://pubmed.ncbi.nlm.nih.gov/21547158

  66. Fogal V, Zhang L, Krajewski S, Ruoslahti E. Mitochondrial/cell-surface protein p32/gC1qR as a molecular target in tumor cells and tumor stroma. Cancer Res [Internet]. 2008;68:7210–8. Available from: https://pubmed.ncbi.nlm.nih.gov/18757437

    Article  CAS  Google Scholar 

  67. Fabricius H-Å, Starzonek S, Lange T. The role of platelet cell surface P-selectin for the direct platelet-tumor cell contact during metastasis formation in human tumors. Front Oncol [Internet]. 2021;11. Available from: https://www.frontiersin.org/article/10.3389/fonc.2021.642761

  68. Chen M, Geng J-G. P-selectin mediates adhesion of leukocytes, platelets, and cancer cells in inflammation, thrombosis, and cancer growth and metastasis. Archivum Immunologiae et Therapiae Experimentalis [Internet]. 2006; 54:75–84. Available from: https://doi.org/10.1007/s00005-006-0010-6.

  69. Chang SS. Overview of prostate-specific membrane antigen. Rev Urol [Internet]. MedReviews, LLC; 2004;6 Suppl 10: S13–8. Available from: https://pubmed.ncbi.nlm.nih.gov/16985927

  70. Xiao C, Fu X, Wang Y, Liu H, Jiang Y, Zhao Z, et al. Transferrin receptor regulates malignancies and the stemness of hepatocellular carcinoma-derived cancer stem-like cells by affecting iron accumulation. PLOS ONE [Internet]. Public Library of Science; 2020;15:e0243812-. Available from: https://doi.org/10.1371/journal.pone.0243812.

  71. Shen Y, Li X, Dong D, Zhang B, Xue Y, Shang P. Transferrin receptor 1 in cancer: a new sight for cancer therapy. Am J Cancer Res [Internet]. e-Century Publishing Corporation; 2018;8:916–31. Available from: https://pubmed.ncbi.nlm.nih.gov/30034931

  72. Wu T-C. The role of vascular cell adhesion molecule-1 in tumor immune evasion. Cancer Res [Internet]. 2007;67:6003–6. Available from: https://pubmed.ncbi.nlm.nih.gov/17616653

    Article  CAS  Google Scholar 

  73. Chen Q, Massagué J. Molecular pathways: VCAM-1 as a potential therapeutic target in metastasis. Clin Cancer Res [Internet]. 2012/08/09. 2012;18:5520–5. Available from: https://pubmed.ncbi.nlm.nih.gov/22879387

  74. Meadows KL, Hurwitz HI. Anti-VEGF therapies in the clinic. Cold Spring Harb Perspect Med [Internet]. Cold Spring Harbor Laboratory Press; 2012;2: a006577. Available from: https://pubmed.ncbi.nlm.nih.gov/23028128

  75. Escalante CP, Zalpour A. Vascular endothelial growth factor inhibitor-induced hypertension: basics for primary care providers. Cardiol Res Pract [Internet]. 2011/05/10. SAGE-Hindawi Access Res; 2011; 2011:816897. Available from: https://pubmed.ncbi.nlm.nih.gov/21629798

  76. Chen X. Protein and peptide probes for molecular imaging. Amino Acids [Internet]. 2011;41:1009–12. Available from: https://pubmed.ncbi.nlm.nih.gov/21643775

    Article  CAS  Google Scholar 

  77. Hu Q, Wang X-Y, Kang L-K, Wei H-M, Xu C-M, Wang T, et al. RGD-targeted ultrasound contrast agent for longitudinal assessment of Hep-2 tumor Angiogenesis in vivo. PLOS ONE [Internet]. Public Library of Science; 2016;11:e0149075. Available from: https://doi.org/10.1371/journal.pone.0149075.

  78. Garrigues HJ, Rubinchikova YE, Dipersio CM, Rose TM. Integrin alphaVbeta3 Binds to the RGD motif of glycoprotein B of Kaposi’s sarcoma-associated herpesvirus and functions as an RGD-dependent entry receptor. J Virol [Internet]. 2007/11/28. American Society for Microbiology (ASM); 2008; 82:1570–80. Available from: https://pubmed.ncbi.nlm.nih.gov/18045938

  79. Lin R-Y, Dayananda K, Chen T-J, Chen C-Y, Liu G-C, Lin K-L, et al. Targeted RGD nanoparticles for highly sensitive in vivo integrin receptor imaging. Contr Media Mol Imaging [Internet]. John Wiley & Sons, Ltd; 2012;7:7–18. Available from: https://doi.org/10.1002/cmmi.457.

  80. Park J-A, Lee J-J, Jung J-C, Yu D-Y, Oh C, Ha S, et al. Gd-DOTA conjugate of RGD as a potential tumor-targeting MRI contrast agent. ChemBioChem [Internet]. John Wiley & Sons, Ltd; 2008;9:2811–3. Available from: https://doi.org/10.1002/cbic.200800529.

  81. Cheng Z, Wu Y, Xiong Z, Gambhir SS, Chen X. Near-infrared fluorescent RGD peptides for optical imaging of integrin alphavbeta3 expression in living mice. Bioconjug Chem [Internet]. 2005; 16:1433–41. Available from: https://pubmed.ncbi.nlm.nih.gov/16287239

  82. Adams KE, Ke S, Kwon S, Liang F, Fan Z, Lu Y, et al. Comparison of visible and near-infrared wavelength-excitable fluorescent dyes for molecular imaging of cancer. J Biomed Optics [Internet]. 2007; 12:1–9. Available from: https://doi.org/10.1117/1.2717137.

  83. Dayton PA, Pearson D, Clark J, Simon S, Schumann PA, Zutshi R, et al. Ultrasonic analysis of peptide- and antibody-targeted microbubble contrast agents for molecular imaging of alphavbeta3-expressing cells. Mol Imaging [Internet]. 2004; 3:125–34. Available from: https://pubmed.ncbi.nlm.nih.gov/15296677

  84. Hainfeld JF, O’Connor MJ, Dilmanian FA, Slatkin DN, Adams DJ, Smilowitz HM. Micro-CT enables microlocalisation and quantification of Her2-targeted gold nanoparticles within tumour regions. Br J Radiol [Internet]. 2010/11/16. The British Institute of Radiology.; 2011;84:526–33. Available from: https://pubmed.ncbi.nlm.nih.gov/21081567

  85. Dijkers EC, Oude Munnink TH, Kosterink JG, Brouwers AH, Jager PL, de Jong JR, et al. Biodistribution of 89Zr-trastuzumab and PET Imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin Pharmacol Therap [Internet]. John Wiley & Sons, Ltd; 2010;87:586–92. Available from: https://doi.org/10.1038/clpt.2010.12.

  86. An F-F, Zhang X-H. Strategies for preparing albumin-based nanoparticles for multifunctional bioimaging and drug delivery. Theranostics [Internet]. Ivyspring International Publisher; 2017; 7:3667–3689. Available from: https://www.thno.org/v07p3667.htm

  87. Schmiedl U, Ogan M, Paajanen H, Marotti M, Crooks LE, Brito AC, et al. Albumin labeled with Gd-DTPA as an intravascular, blood pool-enhancing agent for MR imaging: biodistribution and imaging studies. Radiology [Internet]. Radiological Society of North America; 1987; 162:205–10. Available from: https://doi.org/10.1148/radiology.162.1.3786763.

  88. Pu F, Qiao J, Xue S, Yang H, Patel A, Wei L, et al. GRPR-targeted protein contrast agents for molecular imaging of receptor expression in cancers by MRI. Scientific Reports [Internet]. 2015; 5:16214. Available from: https://doi.org/10.1038/srep16214.

  89. Li S, Jiang J, Zou J, Qiao J, Xue S, Wei L, et al. PEGylation of protein-based MRI contrast agents improves relaxivities and biocompatibilities. J Inorg Biochem [Internet]. 2011/11/19. 2012; 107:111–8. Available from: https://pubmed.ncbi.nlm.nih.gov/22178673

  90. Yu S, Wen R, Wang H, Zha Y, Qiu L, Li B, et al. Chitosan-graft-Poly(l-lysine) dendron-assisted facile self-assembly of Au nanoclusters for enhanced X-ray computer tomography imaging and precise MMP-9 plasmid shRNA delivery. Chem Mater [Internet]. American Chemical Society; 2019; 31:3992–4007. Available from: https://doi.org/10.1021/acs.chemmater.9b00507.

  91. Cootney RW. Ultrasound imaging: principles and applications in rodent research. ILAR J [Internet]. 2001; 42:233–47. Available from: https://doi.org/10.1093/ilar.42.3.233.

  92. Grover VPB, Tognarelli JM, Crossey MME, Cox IJ, Taylor-Robinson SD, McPhail MJW. Magnetic resonance imaging: principles and techniques: lessons for clinicians.. J Clin Exp Hepatol [Internet]. 2015/08/20 Elsevier; 2015; 5:246–255. Available from: https://pubmed.ncbi.nlm.nih.gov/26628842

  93. Cormode DP, Naha PC, Fayad ZA. Nanoparticle contrast agents for computed tomography: a focus on micelles. Contrast Media Mol Imaging [Internet]. 2014; 9:37–52. Available from: https://pubmed.ncbi.nlm.nih.gov/24470293

  94. Gaikwad HK, Tsvirkun D, Ben-Nun Y, Merquiol E, Popovtzer R, Blum G. Molecular imaging of cancer using X-ray computed tomography with protease targeted iodinated activity-based probes. Nano Letters [Internet]. American Chemical Society; 2018; 18:1582–91. Available from: https://doi.org/10.1021/acs.nanolett.7b03813.

  95. Howell JD. Early clinical use of the X-ray. Trans Am Clin Climatol Assoc [Internet]. American Clinical and Climatological Association; 2016; 127:341–349. Available from: https://pubmed.ncbi.nlm.nih.gov/28066069

  96. Beyer T, Bidaut L, Dickson J, Kachelriess M, Kiessling F, Leitgeb R, et al. What scans we will read: imaging instrumentation trends in clinical oncology. Cancer Imaging [Internet]. 2020; 20:38. Available from: https://doi.org/10.1186/s40644-020-00312-3.

  97. Hainfeld JF, Ridwan SM, Stanishevskiy Y, Smilowitz NR, Davis J, Smilowitz HM. Small, long blood half-life iodine nanoparticle for vascular and tumor imaging. Sci Rep [Internet]. Nature Publishing Group UK; 2018; 8:13803. Available from: https://pubmed.ncbi.nlm.nih.gov/30218059

  98. Tsvirkun D, Ben-Nun Y, Merquiol E, Zlotver I, Meir K, Weiss-Sadan T, et al. CT imaging of enzymatic activity in cancer using covalent probes reveal a size-dependent pattern. J Am Chem Soc [Internet]. American Chemical Society; 2018; 140:12010–20. Available from: https://doi.org/10.1021/jacs.8b05817.

  99. Hamidi H, Ivaska J. Every step of the way: integrins in cancer progression and metastasis. Nat Rev Cancer [Internet]. 2018;18:533–48. Available from: https://pubmed.ncbi.nlm.nih.gov/30002479

    Article  CAS  Google Scholar 

  100. Kinsella JM, Jimenez RE, Karmali PP, Rush AM, Kotamraju VR, Gianneschi NC, et al. X-ray computed tomography imaging of breast cancer by using targeted peptide-labeled bismuth sulfide nanoparticles. Angew Chem Int Ed Engl [Internet]. 2011/10/26. 2011; 50:12308–11. Available from: https://pubmed.ncbi.nlm.nih.gov/22028313

  101. Miyata S, Kawabata S, Hiramatsu R, Doi A, Ikeda N, Yamashita T, et al. Computed tomography imaging of transferrin targeting liposomes encapsulating both boron and iodine contrast agents by convection-enhanced delivery to F98 Rat Glioma for boron neutron capture therapy. Neurosurgery [Internet]. 2011; 68:1380–7. Available from: https://doi.org/10.1227/NEU.0b013e31820b52aa.

  102. Wyss C, Schaefer SC, Juillerat-Jeanneret L, Lagopoulos L, Lehr H-A, Becker CD, et al. Molecular imaging by micro-CT: specific E-selectin imaging. Eur Radiol [Internet]. 2009; 19:2487–94. Available from: https://doi.org/10.1007/s00330-009-1434-2.

  103. Popovtzer R, Agrawal A, Kotov NA, Popovtzer A, Balter J, Carey TE, et al. Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett [Internet]. 2008; 8:4593–6. Available from: https://pubmed.ncbi.nlm.nih.gov/19367807

  104. Ashton JR, Gottlin EB, Patz Jr EF, West JL, Badea CT. A comparative analysis of EGFR-targeting antibodies for gold nanoparticle CT imaging of lung cancer. PLoS One [Internet]. Public Library of Science; 2018;13:e0206950–e0206950. Available from: https://pubmed.ncbi.nlm.nih.gov/30408128

  105. Gessner R, Dayton PA. Advances in molecular imaging with ultrasound. Mol Imaging [Internet]. 2010;9:117–27. Available from: https://pubmed.ncbi.nlm.nih.gov/20487678

    Google Scholar 

  106. Unnikrishnan S, Klibanov AL. Microbubbles as ultrasound contrast agents for molecular imaging: preparation and application. Am J Roentgenol [Internet]. American Roentgen Ray Society; 2012; 199:292–9. Available from: https://doi.org/10.2214/AJR.12.8826.

  107. van Rooij T, Daeichin V, Skachkov I, de Jong N, Kooiman K. Targeted ultrasound contrast agents for ultrasound molecular imaging and therapy. Interl J Hyperthermia [Internet]. Taylor & Francis; 2015; 31:90–106. Available from: https://doi.org/10.3109/02656736.2014.997809.

  108. Yin T, Wang P, Zheng R, Zheng B, Cheng D, Zhang X, et al. Nanobubbles for enhanced ultrasound imaging of tumors. Int J Nanomed [Internet]. 2012/02/22 Dove Medical Press. 2012;7:895–904. Available from: https://pubmed.ncbi.nlm.nih.gov/22393289

    CAS  Google Scholar 

  109. Otani K, Nishimura H, Kamiya A, Harada-Shiba M. Simplified preparation of αvβ3 integrin-targeted microbubbles based on a clinically available ultrasound contrast agent: validation in a tumor-bearing mouse model. Ultras Med Biol [Internet]. 2018;44:1063–73. Available from: https://www.sciencedirect.com/science/article/pii/S0301562918300413

  110. Taylor MR, Couto JR, Scallan CD, Ceriani RL, Peterson JA. Lactadherin (formerly BA46), a membrane-associated glycoprotein expressed in human milk and breast carcinomas, promotes Arg-Gly-Asp (RGD)-dependent cell adhesion. DNA and Cell Biol [Internet]. Mary Ann Liebert, Inc., publishers; 1997;16:861–9. Available from: https://doi.org/10.1089/dna.1997.16.861.

  111. Bu H-F, Zuo X-L, Wang X, Ensslin MA, Koti V, Hsueh W, et al. Milk fat globule–EGF factor 8/lactadherin plays a crucial role in maintenance and repair of murine intestinal epithelium. J Clin Investig [Internet]. The American Society for Clinical Investigation; 2007; 117:3673–83. Available from: https://doi.org/10.1172/JCI31841.

  112. Yang H, Cai W, Xu L, Lv X, Qiao Y, Li P, et al. Nanobubble–affibody: novel ultrasound contrast agents for targeted molecular ultrasound imaging of tumor. Biomaterials [Internet]. 2015; 37:279–88. Available from: https://www.sciencedirect.com/science/article/pii/S0142961214010606

  113. Nair A, Ingram N, Verghese ET, Wijetunga I, Markham AF, Wyatt J, et al. CD105 is a prognostic marker and valid endothelial target for microbubble platforms in cholangiocarcinoma. Cell Oncol (Dordr) [Internet]. 2020/05/28. Springer Netherlands; 2020; 43:835–845. Available from: https://pubmed.ncbi.nlm.nih.gov/32468445

  114. Shan R, Wang B, Wang A, Sun Z, Dong F, Liu J, et al. Endoglin-targeted contrast-enhanced ultrasound imaging in hepatoblastoma xenografts. Oncol Lett [Internet]. 2018/07/04. D.A. Spandidos; 2018; 16:3784–3790. Available from: https://pubmed.ncbi.nlm.nih.gov/30127989

  115. Yuan H, Wang W, Wen J, Lin L, Exner AA, Guan P, et al. Dual-targeted microbubbles specific to integrin αVβ3 and vascular endothelial growth factor receptor 2 for ultrasonography evaluation of tumor angiogenesis. Ultras Med Biol [Internet]. Elsevier; 2018; 44:1460–7. Available from: https://doi.org/10.1016/j.ultrasmedbio.2018.03.022.

  116. Warram JM, Sorace AG, Saini R, Umphrey HR, Zinn KR, Hoyt K. A triple-targeted ultrasound contrast agent provides improved localization to tumor vasculature. J Ultrasound Med [Internet]. 2011; 30:921–31. Available from: https://pubmed.ncbi.nlm.nih.gov/21705725

  117. Pochon S, Tardy I, Bussat P, Bettinger T, Brochot J, von Wronski M, et al. BR55: A lipopeptide-based VEGFR2-targeted ultrasound contrast agent for molecular imaging of angiogenesis. Investig Radiol [Internet]. 2010;45. Available from: https://journals.lww.com/investigativeradiology/Fulltext/2010/02000/BR55__A_Lipopeptide_Based_VEGFR2_Targeted.6.aspx

  118. Willmann JK, Bonomo L, Testa AC, Rinaldi P, Rindi G, Valluru KS, et al. Ultrasound molecular imaging with BR55 in patients with breast and ovarian lesions: first-in-human results. J Clin Oncol [Internet]. 2017/03/14. American Society of Clinical Oncology; 2017; 35:2133–40. Available from: https://pubmed.ncbi.nlm.nih.gov/28291391

  119. Haris M, Yadav SK, Rizwan A, Singh A, Wang E, Hariharan H, et al. Molecular magnetic resonance imaging in cancer. J Transl Med [Internet]. 2015; 13:313. Available from: https://doi.org/10.1186/s12967-015-0659-x.

  120. Lu Z-R. Magnetic resonance molecular imaging for non-invasive precision cancer diagnosis. Curr Opin Biomed Eng [Internet]. 2017/11/16. 2017; 3:67–73. Available from: https://pubmed.ncbi.nlm.nih.gov/30272041

  121. Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI contrast agents: current challenges and new frontiers. Chem Rev [Internet]. 2018/10/16. 2019; 119:957–1057. Available from: https://pubmed.ncbi.nlm.nih.gov/30350585

  122. Aryal S, Stigliano C, Key J, Ramirez M, Anderson J, Karmonik C, et al. Paramagnetic Gd3+ labeled red blood cells for magnetic resonance angiography. Biomaterials [Internet]. 2016; 98:163–70. Available from: https://www.sciencedirect.com/science/article/pii/S0142961216301636

  123. Barrett T, Kobayashi H, Brechbiel M, Choyke PL. Macromolecular MRI contrast agents for imaging tumor angiogenesis. Eur J Radiol [Internet]. Elsevier; 2006; 60:353–66. Available from: https://doi.org/10.1016/j.ejrad.2006.06.025.

  124. Shukla SC, Singh A, Pandey AK, Mishra A. Review on production and medical applications of ɛ-polylysine. Biochem Eng J [Internet] 2012; 65:70–81. Available from: https://www.sciencedirect.com/science/article/pii/S1369703X1200085X

  125. Liu Y, Wu X, Sun X, Wang D, Zhong Y, Jiang D, et al. Design, synthesis, and evaluation of VEGFR-targeted macromolecular MRI contrast agent based on biotin–avidin-specific binding. International Journal of Nanomedicine. Dove Press; 2017; 12:5039.

    Google Scholar 

  126. Xue S, Qiao J, Pu F, Cameron M, Yang JJ. Design of a novel class of protein-based magnetic resonance imaging contrast agents for the molecular imaging of cancer biomarkers. Wiley Interdiscip Rev Nanomed Nanobiotechnol [Internet]. 2013/01/17. 2013; 5:163–79. Available from: https://pubmed.ncbi.nlm.nih.gov/23335551

  127. Qiao J, Li S, Wei L, Jiang J, Long R, Mao H, et al. HER2 targeted molecular MR imaging using a De Novo designed protein contrast agent. PLOS ONE [Internet]. Public library of science; 2011;6:e18103. Available from: https://doi.org/10.1371/journal.pone.0018103.

  128. Pilch J, Brown DM, Komatsu M, Järvinen TAH, Yang M, Peters D, et al. Peptides selected for binding to clotted plasma accumulate in tumor stroma and wounds. Proc Natl Acad Sci U S A [Internet]. 2006/02/13. National Academy of Sciences; 2006; 103:2800–2804. Available from: https://pubmed.ncbi.nlm.nih.gov/16476999

  129. Newman MR, Benoit DSW. In vivo translation of peptide-targeted drug delivery systems discovered by phage display. Bioconjug Chem [Internet]. 2018/06/29. 2018; 29:2161–9. Available from: https://pubmed.ncbi.nlm.nih.gov/29889510

  130. Ye F, Jeong E-K, Jia Z, Yang T, Parker D, Lu Z-R. A peptide targeted contrast agent specific to fibrin-fibronectin complexes for cancer molecular imaging with MRI. Bioconjugate Chem [Internet]. American Chemical Society; 2008; 19:2300–3. Available from: https://doi.org/10.1021/bc800211r.

  131. Zhou Z, Wu X, Kresak A, Griswold M, Lu Z-R. Peptide targeted tripod macrocyclic Gd(III) chelates for cancer molecular MRI. Biomaterials [Internet]. 2013/07/14. 2013; 34:7683–93. Available from: https://pubmed.ncbi.nlm.nih.gov/23863450

  132. Artemov D, Mori N, Okollie B, Bhujwalla Z. MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magnet Resonan Med. 2003;49:403–8.

    Article  CAS  Google Scholar 

  133. Chinol M, Casalini P, Maggiolo M, Canevari S, Omodeo ES, Caliceti P, et al. Biochemical modifications of avidin improve pharmacokinetics and biodistribution, and reduce immunogenicity. Br J Cancer [Internet]. 1998;78:189–97. Available from. https://doi.org/10.1038/bjc.1998.463.

  134. Cheng W, Ping Y, Zhang Y, Chuang K-H, Liu Y. Magnetic resonance imaging (MRI) contrast agents for tumor diagnosis. J Healthcare Eng [Internet]. Multi Science Publishing; 2013; 4:143865. Available from: https://doi.org/10.1260/2040-2295.4.1.23.

  135. Tsourkas A, Shinde-Patil VR, Kelly KA, Patel P, Wolley A, Allport JR, et al. In vivo imaging of activated endothelium using an anti-VCAM-1 magnetooptical probe. Bioconjugate Chem [Internet]. American Chemical Society; 2005; 16:576–81. Available from: https://doi.org/10.1021/bc050002e.

  136. Kresse M, Wagner S, Pfefferer D, Lawaczeck R, Elste V, Semmler W. Targeting of ultrasmall superparamagnetic iron oxide (USPIO) particles to tumor cells in vivo by using transferrin receptor pathways. Magnet Reson Med [Internet]. John Wiley & Sons, Ltd; 1998;40:236–42. Available from: https://doi.org/10.1002/mrm.1910400209.

  137. Wang Y-XJ, Xuan S, Port M, Idee J-M. Recent advances in superparamagnetic iron oxide nanoparticles for cellular imaging and targeted therapy research. Curr Pharm Des [Internet]. Bentham Science Publishers; 2013; 19:6575–6593. Available from: https://pubmed.ncbi.nlm.nih.gov/23621536

  138. van Dort ME, Rehemtulla A, Ross BD. PET and SPECT Imaging of Tumor Biology: New Approaches towards Oncology Drug Discovery and Development. Curr Comput Aided Drug Des [Internet]. 2008; 4:46–53. Available from: https://pubmed.ncbi.nlm.nih.gov/19809593

  139. Liu Y, Liu G, Hnatowich DJ. A brief review of chelators for radiolabeling oligomers. Materials [Internet]. MDPI; 2010; 3:3204–3217. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5445922/

  140. Forte E, Fiorenza D, Torino E, Costagliola di Polidoro A, Cavaliere C, Netti PA, et al. Radiolabeled PET/MRI nanoparticles for tumor imaging. J Clin Med [Internet]. MDPI; 2019; 9:89. Available from: https://pubmed.ncbi.nlm.nih.gov/31905769

  141. Hornok V. Serum albumin nanoparticles: problems and prospects. Polymers (Basel) [Internet]. MDPI; 2021; 13:3759. Available from: https://pubmed.ncbi.nlm.nih.gov/34771316

  142. Gommans GMM, Gommans E, van der Zant FM, Teule GJJ, van der Schors TG, de Waard JWD. 99mTc Nanocoll: a radiopharmaceutical for sentinel node localisation in breast cancer—In vitro and in vivo results. Appl Radiat Isotopes [Internet]. 2009; 67:1550–8. Available from: https://www.sciencedirect.com/science/article/pii/S0969804309002012

  143. Maxwell JE, Howe JR. Imaging in neuroendocrine tumors: an update for the clinician. Int J Endocr Oncol [Internet]. 2015;2:159–68. Available from: https://pubmed.ncbi.nlm.nih.gov/26257863

    Article  CAS  Google Scholar 

  144. Rizzieri D. Zevalin® (ibritumomab tiuxetan): after more than a decade of treatment experience, what have we learned? Critic Rev Oncol/Hematol [Internet]. 2016;105:5–17. Available from: https://www.sciencedirect.com/science/article/pii/S1040842816301640

    Article  Google Scholar 

  145. Taneja SS. ProstaScint(R) scan: contemporary use in clinical practice. Rev Urol [Internet]. MedReviews, LLC; 2004;6 Suppl 10:S19–28. Available from: https://pubmed.ncbi.nlm.nih.gov/16985928

  146. Mukherjee S, Ayanambakkam A, Ibrahimi S, Schmidt S, Charkrabarty JH, Khawandanah M. Ibritumomab tiuxetan (Zevalin) and elevated serum human anti-murine antibody (HAMA). Hematol/Oncol Stem Cell Therapy [Internet]. 2018; 11:187–8. Available from: https://www.sciencedirect.com/science/article/pii/S1658387618300050

  147. Massicano AVF, Marquez-Nostra BV, Lapi SE. Targeting HER2 in nuclear medicine for imaging and therapy. Mol Imaging [Internet]. SAGE Publications; 2018; 17:1536012117745386. Available from: https://pubmed.ncbi.nlm.nih.gov/29357745

  148. Du S, Luo C, Yang G, Gao H, Wang Y, Li X, et al. Developing PEGylated reversed D-peptide as a novel HER2-targeted SPECT imaging probe for breast cancer detection. Bioconjugate Chem [Internet]. American Chemical Society; 2020; 31:1971–80. Available from: https://doi.org/10.1021/acs.bioconjchem.0c00334.

  149. Li L, Wu Y, Wang Z, Jia B, Hu Z, Dong C, et al. SPECT/CT imaging of the novel HER2-targeted peptide probe, 99mTc-HYNIC-H6F in breast cancer mouse models. J Nuclear Med [Internet]. 2017; 58:821. Available from: http://jnm.snmjournals.org/content/58/5/821.abstract

  150. Sörensen J, Sandberg D, Sandström M, Wennborg A, Feldwisch J, Tolmachev V, et al. First-in-human molecular imaging of HER2 expression in breast cancer metastases using the 111In-ABY-025 affibody molecule. J Nucl Med [Internet]. 2014; 55:730. Available from: http://jnm.snmjournals.org/content/55/5/730.abstract

  151. Razumienko EJ, Scollard DA, Reilly RM. Small-animal SPECT/CT of HER2 and HER3 expression in tumor xenografts in athymic mice using trastuzumab Fab–Heregulin bispecific radioimmunoconjugates. J Nuclear Med [Internet]. 2012; 53:1943. Available from: http://jnm.snmjournals.org/content/53/12/1943.abstract

  152. Facca VJ, Al-saden N, Ku A, Reilly RM. Imaging of HER2-positive tumors in NOD/SCID mice with Pertuzumab Fab-hexahistidine peptide immunoconjugates labeled with [99mTc]-(I)-Tricarbonyl complex. Mol Imaging Biol [Internet]. 2021; 23:495–504. Available from: https://doi.org/10.1007/s11307-020-01571-z.

  153. Li D, Li X, Yang J, Shi Z, Zhang L, Li R, et al. Nivolumab-DTPA-based PD-1 imaging reveals structural and pathological changes in colorectal carcinoma. Front Bioeng Biotechnol [Internet]. 2022;10. Available from: https://www.frontiersin.org/article/10.3389/fbioe.2022.839756

  154. Chatterjee S, Lesniak W, Nimmagadda S. Noninvasive imaging of immune checkpoint ligand PD-L1 in tumors and metastases for guiding immunotherapy. Mol Imaging. 2017;16:153601211771845.

    Article  Google Scholar 

  155. Jin X, Liang N, Wang M, Meng Y, Jia B, Shi X, et al. Integrin imaging with 99mTc-3PRGD2 SPECT/CT shows high specificity in the diagnosis of lymph node metastasis from non–small cell lung cancer. Radiology [Internet]. Radiological Society of North America; 2016; 281:958–66. Available from: https://doi.org/10.1148/radiol.2016150813.

  156. Zhao H, Gao H, Luo C, Yang G, Zhao X, Gao S, et al. An Integrin-αvβ6/α5β1-bitargeted probe for the SPECT imaging of pancreatic adenocarcinoma in preclinical and primary clinical studies. Bioconjugate Chem [Internet]. American Chemical Society; 2021; 32:1298–305. Available from: https://doi.org/10.1021/acs.bioconjchem.1c00296.

  157. John AE, Luckett JC, Tatler AL, Awais RO, Desai A, Habgood A, et al. Preclinical SPECT/CT Imaging of αvβ6 integrins for molecular stratification of idiopathic pulmonary fibrosis. J Nuclear Med [Internet]. 2013; 54:2146. Available from: http://jnm.snmjournals.org/content/54/12/2146.abstract

  158. Dijkgraaf I, Boerman OC. Molecular imaging of angiogenesis with SPECT. Eur J Nucl Med Mol Imaging [Internet]. Springer-Verlag; 2010;37 Suppl 1:S104–13. Available from: https://pubmed.ncbi.nlm.nih.gov/20617435

  159. Rainer E, Wang H, Traub-Weidinger T, Widhalm G, Fueger B, Chang J, et al. The prognostic value of [123I]-vascular endothelial growth factor ([123I]-VEGF) in glioma. Eur J Nuclear Med Mol Imaging [Internet]. 2018; 45:2396–403. Available from: https://doi.org/10.1007/s00259-018-4088-y.

  160. Paquette M, Phoenix S, Lawson C, Guérin B, Lecomte R, Tai L-H, et al. A preclinical PET dual-tracer imaging protocol for ER and HER2 phenotyping in breast cancer xenografts. EJNMMI Res [Internet]. 2020; 10:69. Available from: https://doi.org/10.1186/s13550-020-00656-8.

  161. Bois F, Noirot C, Dietemann S, Mainta IC, Zilli T, Garibotto V, et al. [(68)Ga]Ga-PSMA-11 in prostate cancer: a comprehensive review. Am J Nucl Med Mol Imaging [Internet]. e-Century Publishing Corporation; 2020; 10:349–74. Available from: https://pubmed.ncbi.nlm.nih.gov/33329937

  162. Keam SJ. Piflufolastat F 18: diagnostic first approval. Mol Diag Therapy [Internet]. 2021; 25:647–56. Available from: https://doi.org/10.1007/s40291-021-00548-0.

  163. Tamura K, Kurihara H, Yonemori K, Tsuda H, Suzuki J, Kono Y, et al. 64Cu-DOTA-trastuzumab PET imaging in patients with HER2-positive breast cancer. J Nucl Med [Internet]. 2013; 54:1869. Available from: http://jnm.snmjournals.org/content/54/11/1869.abstract

  164. Xu Y, Wang L, Pan D, Yu C, Mi B, Huang Q, et al. PET imaging of a (68)Ga labeled modified HER2 affibody in breast cancers: from xenografts to patients. Br J Radiol [Internet]. 2019/10/08. The British Institute of Radiology.; 2019;92:20190425. Available from: https://pubmed.ncbi.nlm.nih.gov/31593482

  165. Garousi J, Lindbo S, Nilvebrant J, Åstrand M, Buijs J, Sandström M, et al. ADAPT, a novel scaffold protein-based probe for radionuclide imaging of molecular targets that are expressed in disseminated cancers. Cancer Res [Internet]. 2015; 75:4364–71. Available from: https://doi.org/10.1158/0008-5472.CAN-14-3497.

  166. Bensch F, van der Veen EL, Lub-de Hooge MN, Jorritsma-Smit A, Boellaard R, Kok IC, et al. 89Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nature Med [Internet]. 2018; 24:1852–8. Available from: https://doi.org/10.1038/s41591-018-0255-8.

  167. Hellebust A, Richards-Kortum R. Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics. Nanomedicine (Lond) [Internet]. 2012;7:429–45. Available from: https://pubmed.ncbi.nlm.nih.gov/22385200

  168. Rosenthal EL, Warram JM, de Boer E, Chung TK, Korb ML, Brandwein-Gensler M, et al. Safety and tumor specificity of cetuximab-IRDye800 for surgical navigation in head and neck cancer. Clin Cancer Res [Internet]. 2015; 21:3658–66. Available from: https://doi.org/10.1158/1078-0432.CCR-14-3284.

  169. Amini A, Safdari Y, Tash Shamsabadi F. Near-infrared fluorescence imaging of EGFR-overexpressing tumors in the mouse xenograft model using scFv-IRDye800CW and Cetuximab-IRDye800CW. In Azhdarinia A, editor. Molecular Imaging [Internet]. Hindawi; 2022; 2022:9589820. Available from: https://doi.org/10.1155/2022/9589820.

  170. Feroldi F, Verlaan M, Knaus H, Davidoiu V, Vugts DJ, van Dongen GAMS, et al. High resolution combined molecular and structural optical imaging of colorectal cancer in a xenograft mouse model. Biomed Opt Express [Internet]. Optical Society of America; 2018; 9:6186–6204. Available from: https://pubmed.ncbi.nlm.nih.gov/31065422

  171. Nitin N, Rosbach KJ, El-Naggar A, Williams M, Gillenwater A, Richards-Kortum RR. Optical molecular imaging of epidermal growth factor receptor expression to improve detection of oral neoplasia. Neoplasia [Internet]. Neoplasia Press Inc.; 2009; 11:542–51. Available from: https://pubmed.ncbi.nlm.nih.gov/19484143

  172. Sampath L, Kwon S, Hall MA, Price RE, Sevick-Muraca EM. Detection of cancer metastases with a dual-labeled near-infrared/positron emission tomography imaging agent. Transl Oncol [Internet]. Neoplasia Press Inc.; 2010; 3:217–307. Available from: https://pubmed.ncbi.nlm.nih.gov/20885893

  173. Lamberts LE, Koch M, de Jong JS, Adams ALL, Glatz J, Kranendonk MEG, et al. Tumor-specific uptake of fluorescent Bevacizumab–IRDye800CW microdosing in patients with primary breast cancer: a phase I feasibility study. Clin Cancer Res [Internet]. 2017; 23:2730–41. Available from: https://doi.org/10.1158/1078-0432.CCR-16-0437.

  174. Li M, Anastassiades CP, Joshi B, Komarck CM, Piraka C, Elmunzer BJ, et al. Affinity peptide for targeted detection of dysplasia in Barrett’s esophagus. Gastroenterology [Internet]. 2010/07/14. 2010; 139:1472–80. Available from: https://pubmed.ncbi.nlm.nih.gov/20637198

  175. McHugh KJ, Jing L, Behrens AM, Jayawardena S, Tang W, Gao M, et al. Biocompatible semiconductor quantum dots as cancer imaging agents. Adv Mat [Internet]. John Wiley & Sons, Ltd; 2018;30:1706356. Available from. https://doi.org/10.1002/adma.201706356.

  176. Gao X, Cui Y, Levenson R, Chung L, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004;22:969–76.

    Article  CAS  Google Scholar 

  177. Cai W, Chen K, Li Z-B, Gambhir SS, Chen X. Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J Nucl Med [Internet]. 2007; 48:1862. Available from: http://jnm.snmjournals.org/content/48/11/1862.abstract

  178. Srinivasan R, Marchant RE, Sen Gupta A. In vitro and in vivo platelet targeting by cyclic RGD-modified liposomes. J Biomed Mater Res A [Internet]. 2010; 93:1004–15. Available from: https://pubmed.ncbi.nlm.nih.gov/19743511

  179. Tansi FL, Rüger R, Kollmeier AM, Rabenhold M, Steiniger F, Kontermann RE, et al. Endoglin based in vivo near-infrared fluorescence imaging of tumor models in mice using activatable liposomes. Biochimica et Biophysica Acta (BBA) General Subjects [Internet]. 2018; 1862:1389–400. Available from: https://www.sciencedirect.com/science/article/pii/S0304416518300746

Download references

Acknowledgments

The author would like to thank Dr. Ramesh Chaughule for the opportunity. The author would also like to thank A. Uma Devi and A. Chandra Sekar Rao for their support and constructive feedback. All images were designed using www.biorender.com.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aluri, S.R. (2022). Protein and Peptide-Based Therapeutics for Cancer Imaging. In: Chaughule, R.S., Patkar, D.P., Ramanujan, R.V. (eds) Nanomaterials for Cancer Detection Using Imaging Techniques and Their Clinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-09636-5_16

Download citation

Publish with us

Policies and ethics