Skip to main content

Physiology of the Larynx

  • Chapter
  • First Online:
Textbook of Surgery of Larynx and Trachea
  • 762 Accesses

Abstract

This chapter aims at describing the physiology of the larynx through its different functions: breathing, protection of the airway, and phonation. It focuses on the neurological aspects of this physiology. The patterns of muscular activations during the different tasks are described, with special mention to the neurological control. The central neurologic control is also synthetized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Negus V. The comparative anatomy and physiology of the larynx. London: W. Heinemann Medical Books; 1949.

    Google Scholar 

  2. Woodson GE. Laryngeal neurophysiology and its clinical uses. Head Neck. 1996;18:78–86.

    CAS  PubMed  Google Scholar 

  3. Rovó L, Bach Á, Sztanó B, Matievics V, Szegesdi I, Castellanos PF. Rotational thyrotracheopexy after cricoidectomy for low-grade laryngeal chrondrosarcoma. Laryngoscope. 2017;127:1109–15.

    PubMed  Google Scholar 

  4. Hanna N, Smith J, Wolfe J. How the acoustic resonances of the subglottal tract affect the impedance spectrum measured through the lips. J Acoust Soc Am. 2018;143:2639.

    PubMed  Google Scholar 

  5. Gillespie AI, Slivka W, Atwood CW Jr, Verdolini Abbott K. The effects of hyper- and hypocapnia on phonatory laryngeal airway resistance in women. J Speech Lang Hear Res. 2015;58:638–52.

    PubMed  PubMed Central  Google Scholar 

  6. England SJ, Bartlett D Jr, Daubenspeck JA. Influence of human vocal cord movements on airflow and resistance during eupnea. J Appl Physiol Respir Environ Exerc Physiol. 1982;52:773–9.

    CAS  PubMed  Google Scholar 

  7. Scheinherr A, Bailly L, Boiron O, Lagier A, Legou T, Pichelin M, Caillibotte G, Giovanni A. Realistic glottal motion and airflow rate during human breathing. Med Eng Phys. 2015;37:829–39.

    PubMed  Google Scholar 

  8. Brancatisano TP, Dodd DS, Engel LA. Respiratory activity of posterior cricoarytenoid muscle and vocal cords in humans. J Appl Physiol Respir Environ Exerc Physiol. 1984;57:1143–9.

    CAS  PubMed  Google Scholar 

  9. Fregosi RF, Ludlow CL. Activation of upper airway muscles during breathing and swallowing. J Appl Physiol. 1985;2014(116):291–301.

    Google Scholar 

  10. Sun QJ, Berkowitz RG, Pilowsky PM. Response of laryngeal motoneurons to hyperventilation induced apnea in the rat. Respir Physiol Neurobiol. 2005;146:155–63.

    PubMed  Google Scholar 

  11. Martin BJ, Logemann JA, Shaker R, Dodds WJ. Normal laryngeal valving patterns during three breath-hold maneuvers: a pilot investigation. Dysphagia. 1993;8:11–20.

    CAS  PubMed  Google Scholar 

  12. Magni C, Chellini E, Lavorini F, Fontana GA, Widdicombe J. Voluntary and reflex cough: similarities and differences. Pulm Pharmacol Ther. 2011;24:308–11.

    CAS  PubMed  Google Scholar 

  13. Fontana GA, Lavorini F. Cough motor mechanisms. Respir Physiol Neurobiol. 2006;152:266–81.

    PubMed  Google Scholar 

  14. Uysal H, Kızılay F, Ünal A, Güngör HA, Ertekin C. The interaction between breathing and swallowing in healthy individuals. J Electromyogr Kinesiol. 2013;23:659–63.

    PubMed  Google Scholar 

  15. Van Daele DJ, McCulloch TM, Palmer PM, Langmore SE. Timing of glottal closure during swallowing: a combined electromyographic and endoscopic analysis. Ann Otol Rhinol Laryngol. 2005;114:478–87.

    PubMed  Google Scholar 

  16. Vose A, Humbert I. “Hidden in plain sight”: a descriptive review of laryngeal vestibule closure. Dysphagia. 2019;34:281–9.

    PubMed  Google Scholar 

  17. Ekberg O. Closure of the laryngeal vestibule during deglutition. Acta Otolaryngol. 1982;93:123–9.

    CAS  PubMed  Google Scholar 

  18. McCulloch TM, Perlman AL, Palmer PM, Van Daele DJ. Laryngeal activity during swallow, phonation, and the Valsalva maneuver: an electromyographic analysis. Laryngoscope. 1996;106:1351–8.

    CAS  PubMed  Google Scholar 

  19. Flaherty RF, Seltzer S, Campbell T, Weisskoff RM, Gilbert RJ. Dynamic magnetic resonance imaging of vocal cord closure during deglutition. Gastroenterology. 1995;109:843–9.

    CAS  PubMed  Google Scholar 

  20. Inamoto Y, Saitoh E, Okada S, Kagaya H, Shibata S, Ota K, Baba M, Fujii N, Katada K, Wattanapan P, Palmer JB. The effect of bolus viscosity on laryngeal closure in swallowing: kinematic analysis using 320-row area detector CT. Dysphagia. 2013;28:33–42.

    PubMed  Google Scholar 

  21. Molfenter SM, Steele CM. Physiological variability in the deglutition literature: hyoid and laryngeal kinematics. Dysphagia. 2011;26:67–74.

    PubMed  Google Scholar 

  22. Leder SB, Burrell MI, Van Daele DJ. Epiglottis is not essential for successful swallowing in humans. Ann Otol Rhinol Laryngol. 2010;119:795–8.

    PubMed  Google Scholar 

  23. Pizzorni N, Schindler A, Castellari M, Fantini M, Crosetti E, Succo G. Swallowing safety and efficiency after open partial horizontal laryngectomy: a videofluoroscopic study. Cancers (Basel). 2019;11:549.

    PubMed  Google Scholar 

  24. Van Den Berg J. Myoelastic theory of voice production. J Speech Hearing Res. 1958;1:227.

    PubMed  Google Scholar 

  25. Pettersen V. Muscular patterns and activation levels of auxiliary breathing muscles and thorax movement in classical singing. Folia Phoniatr Logop. 2005;57:255–77.

    PubMed  Google Scholar 

  26. Berry DA, Verdolini K, Montequin DW, Hess MM, Chan RW, Titze IR. A quantitative output-cost ratio in voice production. J Speech Lang Hear Res. 2001;44:29–37.

    CAS  PubMed  Google Scholar 

  27. Prades JM, Dumollard JM, Timoshenko AP, Durand M, Martin C. Descriptive anatomy of the cricoarytenoid articulation: application to articular dynamics in carcinology. Surg Radiol Anat. 2000;22:277–82.

    CAS  PubMed  Google Scholar 

  28. Lagier A, Guenoun D, Legou T, Espesser R, Giovanni A, Champsaur P. Control of the glottal configuration in ex vivo human models: quantitative anatomy for clinical and experimental practices. Surg Radiol Anat. 2017;39:257–62.

    PubMed  Google Scholar 

  29. Poletto CJ, Verdun LP, Strominger R, Ludlow CL. Correspondence between laryngeal vocal fold movement and muscle activity during speech and nonspeech gestures. J Appl Physiol (1985). 2004;97:858–66.

    PubMed  Google Scholar 

  30. Titze IR, Luschei ES, Hirano M. Role of the thyroarytenoid muscle in regulation of fundamental frequency. J Voice. 1989;3:213–24.

    Google Scholar 

  31. Jiang J, Lin E, Hanson DG. Vocal fold physiology. Otolaryngol Clin N Am. 2000;33:699–718.

    CAS  Google Scholar 

  32. Alipour F, Scherer RC. On pressure-frequency relations in the excised larynx. J Acoust Soc Am. 2007;122:2296–305.

    PubMed  Google Scholar 

  33. Freeman E, Woo P, Saxman JH, Murry T. A comparison of sung and spoken phonation onset gestures using high-speed digital imaging. J Voice. 2012;26:226–38.

    PubMed  Google Scholar 

  34. Herbst CT, Ternström S, Svec JG. Investigation of four distinct glottal configurations in classical singing—a pilot study. J Acoust Soc Am. 2009;125:EL104–9.

    PubMed  Google Scholar 

  35. Hoffman MR, Witt RE, Chapin WJ, McCulloch TM, Jiang JJ. Multiparameter comparison of injection laryngoplasty, medialization laryngoplasty, and arytenoid adduction in an excised larynx model. Laryngoscope. 2010;120:769–76.

    PubMed  PubMed Central  Google Scholar 

  36. Hirano M. Morphological structure of the vocal cord as a vibrator and its variations. Folia Phoniatr (Basel). 1974;26:89–94.

    CAS  PubMed  Google Scholar 

  37. El-Hifnawi H, El-Hifnawi E. Light and electron microscopical studies of the anatomical and functional distribution of glands in human vocal cords. Arch Otorhinolaryngol. 1984;240:277–85.

    CAS  PubMed  Google Scholar 

  38. Ayache S, Ouaknine M, Dejonkere P, Prindere P, Giovanni A. Experimental study of the effects of surface mucus viscosity on the glottic cycle. J Voice. 2004;18:107–15.

    PubMed  Google Scholar 

  39. Gray SD, Pignatari SS, Harding P. Morphologic ultrastructure of anchoring fibers in normal vocal fold basement membrane zone. J Voice. 1994;8:48–52.

    CAS  PubMed  Google Scholar 

  40. Gray SD, Hammond E, Hanson DF. Benign pathologic responses of the larynx. Ann Otol Rhinol Laryngol. 1995;104:13–8.

    CAS  PubMed  Google Scholar 

  41. Gray SD. Cellular physiology of the vocal folds. Otolaryngol Clin N Am. 2000;33:679–98.

    CAS  Google Scholar 

  42. Bailly L, Cochereau T, Orgéas L, Henrich Bernardoni N, Rolland du Roscoat S, McLeer-Florin A, Robert Y, Laval X, Laurencin T, Chaffanjon P, Fayard B, Boller E. 3D multiscale imaging of human vocal folds using synchrotron X-ray microtomography in phase retrieval mode. Sci Rep. 2018;8(1):14003.

    PubMed  PubMed Central  Google Scholar 

  43. Hirano M, Sato K, Nakashima T. Fibroblasts in human vocal fold mucosa. Acta Otolaryngol. 1999;119:271–6.

    CAS  PubMed  Google Scholar 

  44. Sato K, Hirano M, Nakashima T. 3D structure of the macula flava in the human vocal fold. Acta Otolaryngol. 2003;123:269–73.

    CAS  PubMed  Google Scholar 

  45. Han Y, Wang J, Fischman DA, Biller HF, Sanders I. Slow tonic muscle fibers in the thyroarytenoid muscles of human vocal folds; a possible specialization for speech. Anat Rec. 1999;256:146–57.

    CAS  PubMed  Google Scholar 

  46. Berke GS, Moore DM, Hantke DR, Hanson DG, Gerratt BR, Burstein F. Laryngeal modeling: theoretical, in vitro, in vivo. Laryngoscope. 1987;97:871–81.

    CAS  PubMed  Google Scholar 

  47. Ouaknine M, Garrel R, Giovanni A. Separate detection of vocal fold vibration by optoreflectometry: a study of biphonation on excised porcine larynges. Folia Phoniatr Logop. 2003;55(1):28–38. https://doi.org/10.1159/000068058.

  48. Giovanni A, Ouaknine M, Guelfucci R, Yu T, Zanaret M, Triglia JM. Nonlinear behavior of vocal fold vibration: the role of coupling between the vocal folds. J Voice. 1999;13:465–76.

    CAS  PubMed  Google Scholar 

  49. Herzel H, Berry D, Titze IR, Saleh M. Analysis of vocal disorders with methods from nonlinear dynamics. J Speech Hear Res. 1994;37:1008–19.

    CAS  PubMed  Google Scholar 

  50. Roubeau B, Henrich N, Castellengo M. Laryngeal vibratory mechanisms: the notion of vocal register revisited. J Voice. 2009;23:425–38.

    PubMed  Google Scholar 

  51. Titze IR, Schmidt SS, Titze MR. Phonation threshold pressure in a physical model of the vocal fold mucosa. J Acoust Soc Am. 1995;97:3080–4.

    CAS  PubMed  Google Scholar 

  52. Lagier A, Legou T, Galant C, Amy de La Bretèque B, Meynadier Y, Giovanni A. The shouted voice: a pilot study of laryngeal physiology under extreme aerodynamic pressure. Logoped Phoniatr Vocol. 2017;42:141–5.

    PubMed  Google Scholar 

  53. Plexico LW, Sandage MJ. Influence of vowel selection on determination of phonation threshold pressure. J Voice. 2012;26:673.e7–12.

    PubMed  Google Scholar 

  54. Baken RJ. Clinical measurement of speech and voice. London: Taylor and Francis; 1987.

    Google Scholar 

  55. Nicollas R, Garrel R, Ouaknine M, Giovanni A, Nazarian B, Triglia JM. Normal voice in children between 6 and 12 years of age: database and nonlinear analysis. J Voice. 2008;22:671–5.

    PubMed  Google Scholar 

  56. Hong YT, Hong KH, Jun JP, Hwang PH. The effects of dynamic laryngeal movements on pitch control. Am J Otolaryngol. 2015;36:660–5.

    PubMed  Google Scholar 

  57. Ishizaka K, Isshiki N. Computer simulation of pathological vocal-fold vibration. J Acoust Soc Am. 1976;60:1193–8.

    CAS  PubMed  Google Scholar 

  58. Dikkers FG, Nikkels PG. Benign lesions of the vocal folds: histopathology and phonotrauma. Ann Otol Rhinol Laryngol. 1995;104:698–703.

    CAS  PubMed  Google Scholar 

  59. Bradley RM. Sensory receptors of the larynx. Am J Med. 2000;108:47S–50S.

    PubMed  Google Scholar 

  60. Sanders I, Han Y, Wang J, Biller H. Muscle spindles are concentrated in the superior vocalis subcompartment of the human thyroarytenoid muscle. J Voice. 1998;12:7–16.

    CAS  PubMed  Google Scholar 

  61. Nagai T. Encapsulated nerve structures in the human vocal cord. An electronmicroscopic study. Acta Otolaryngol. 1987;104:363–9.

    CAS  PubMed  Google Scholar 

  62. Brandon CA, Rosen C, Georgelis G, Horton MJ, Mooney MP, Sciote JJ. Staining of human thyroarytenoid muscle with myosin antibodies reveals some unique extrafusal fibers, but no muscle spindles. J Voice. 2003;17:245–54.

    PubMed  PubMed Central  Google Scholar 

  63. Sanders I, Mu L. Anatomy of the human internal superior laryngeal nerve. Anat Rec. 1998;252:646–56.

    CAS  PubMed  Google Scholar 

  64. Friedman M, LoSavio P, Ibrahim H. Superior laryngeal nerve identification and preservation in thyroidectomy. Arch Otolaryngol Head Neck Surg. 2002;128:296–303.

    PubMed  Google Scholar 

  65. Dionigi G, Kim HY, Randolph GW, Wu CW, Sun H, Liu X, Barczynski M, Chiang FY. Prospective validation study of Cernea classification for predicting EMG alterations of the external branch of the superior laryngeal nerve. Surg Today. 2016;46:785–91.

    PubMed  Google Scholar 

  66. Morton RP, Whitfield P, Al-Ali S. Anatomical and surgical considerations of the external branch of the superior laryngeal nerve: a systematic review. Clin Otolaryngol. 2006;31:368–74.

    CAS  PubMed  Google Scholar 

  67. Page C, Laude M, Legars D, Foulon P, Strunski V. The external laryngeal nerve: surgical and anatomic considerations. Report of 50 total thyroidectomies. Surg Radiol Anat. 2004;26:182–5.

    CAS  PubMed  Google Scholar 

  68. Kierner AC, Aigner M, Burian M. The external branch of the superior laryngeal nerve: its topographical anatomy as related to surgery of the neck. Arch Otolaryngol Head Neck Surg. 1998;124:301–3.

    CAS  PubMed  Google Scholar 

  69. Henry M, Pekala PA, Sanna B, Vikse J, Sanna S, Saganiak K, Tomaszewska IM, Tubbs RS, Tomaszewski KA. The anastomoses of the recurrent laryngeal nerve in the larynx: a meta-analysis and systematic review. J Voice. 2017;31:495–503.

    PubMed  Google Scholar 

  70. Wu BL, Sanders I, Mu L, Biller HF. The human communicating nerve. An extension of the external superior laryngeal nerve that innervates the vocal cord. Arch Otolaryngol Head Neck Surg. 1994;120:1321–8.

    CAS  PubMed  Google Scholar 

  71. Maranillo E, León X, Ibañez M, Orús C, Quer M, Sañudo JR. Variability of the nerve supply patterns of the human posterior cricoarytenoid muscle. Laryngoscope. 2003;113:602–6.

    PubMed  Google Scholar 

  72. Sanders I, Wu BL, Mu L, Li Y, Biller HF. The innervation of the human larynx. Arch Otolaryngol Head Neck Surg. 1993;119:934–9.

    CAS  PubMed  Google Scholar 

  73. Davis PJ, Nail BS. On the location and size of laryngeal motoneurons in the cat and rabbit. J Comp Neurol. 1984;230:13–32.

    CAS  PubMed  Google Scholar 

  74. Ludlow CL. Central nervous system control of voice and swallowing. J Clin Neurophysiol. 2015;32:294–303.

    PubMed  PubMed Central  Google Scholar 

  75. Simonyan K, Horwitz B. Laryngeal motor cortex and control of speech in humans. Neuroscientist. 2011;17:197–208.

    PubMed  PubMed Central  Google Scholar 

  76. Feldman JL, Mitchell GS, Nattie EE. Breathing: rhythmicity, plasticity, chemosensitivity. Annu Rev Neurosci. 2003;26:239–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Paydarfar D, Gilbert RJ, Poppel CS, Nassab PF. Respiratory phase resetting and airflow changes induced by swallowing in humans. J Physiol. 1995;483:273–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Gestreau C, Grélot L, Bianchi AL. Activity of respiratory laryngeal motoneurons during fictive coughing and swallowing. Exp Brain Res. 2000;130:27–34.

    CAS  PubMed  Google Scholar 

  79. Jean A. Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol Rev. 2001;81:929–69.

    CAS  PubMed  Google Scholar 

  80. Sörös P, Inamoto Y, Martin RE. Functional brain imaging of swallowing: an activation likelihood estimation meta-analysis. Hum Brain Mapp. 2009;30:2426–39.

    PubMed  Google Scholar 

  81. Wong SM, Domangue RJ, Fels S, Ludlow CL. Evidence that an internal schema adapts swallowing to upper airway requirements. J Physiol. 2017;595:1793–814.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Wattendorf E, Westermann B, Fiedler K, Kaza E, Lotze M, Celio MR. Exploration of the neural correlates of ticklish laughter by functional magnetic resonance imaging. Cereb Cortex. 2013;23:1280–9.

    PubMed  Google Scholar 

  83. Loucks TM, Poletto CJ, Simonyan K, Reynolds CL, Ludlow CL. Human brain activation during phonation and exhalation: common volitional control for two upper airway functions. NeuroImage. 2007;36:131–43.

    PubMed  Google Scholar 

  84. Jones JA, Munhall KG. Remapping auditory-motor representations in voice production. Curr Biol. 2005;15:1768–72.

    CAS  PubMed  Google Scholar 

  85. Larson CR, Burnett TA, Kiran S, Hain TC. Effects of pitch-shift velocity on voice Fo responses. J Acoust Soc Am. 2000;107:559–64.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aude Lagier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lagier, A., Giovanni, A. (2022). Physiology of the Larynx. In: Remacle, M., Eckel, H.E. (eds) Textbook of Surgery of Larynx and Trachea. Springer, Cham. https://doi.org/10.1007/978-3-031-09621-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09621-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09620-4

  • Online ISBN: 978-3-031-09621-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics