Skip to main content

Bounds for Synchronizing Markov Decision Processes

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13296))

Included in the following conference series:

Abstract

We consider Markov decision processes with synchronizing objectives, which require that a probability mass of \(1-\varepsilon \) accumulates in a designated set of target states, either once, always, infinitely often, or always from some point on, where \(\varepsilon = 0\) for sure synchronizing, and \(\varepsilon \rightarrow 0\) for almost-sure and limit-sure synchronizing.

We introduce two new qualitative modes of synchronizing, where the probability mass should be either positive, or bounded away from 0. They can be viewed as dual synchronizing objectives. We present algorithms and tight complexity results for the problem of deciding if a Markov decision process is positive, or bounded synchronizing, and we provide explicit bounds on \(\varepsilon \) in all synchronizing modes. In particular, we show that deciding positive and bounded synchronizing always from some point on, is coNP-complete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The results of [12, Lemma 11 & 12] consider a more general definition of limit-sure synchronizing, where the support of the \((1-\varepsilon )\)-synchronizing distribution is required to have its support contained in a given set Z. We release this constraint by taking \(Z = Q\).

References

  1. Akshay, S., Genest, B., Vyas, N.: Distribution-based objectives for Markov decision processes. In: Proceedings of LICS, pp. 36–45. ACM (2018)

    Google Scholar 

  2. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)

    Google Scholar 

  3. Beauquier, D., Rabinovich, A., Slissenko, A.: A logic of probability with decidable model-checking. In: Bradfield, J. (ed.) CSL 2002. LNCS, vol. 2471, pp. 306–321. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45793-3_21

    Chapter  MATH  Google Scholar 

  4. Bell, P.C., Semukhin, P.: Decidability of cutpoint isolation for probabilistic finite automata on letter-bounded inputs. In: Proceedings of CONCUR, vol. 171 of LIPIcs, pp. 22:1–22:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

    Google Scholar 

  5. Bertrand, N., Dewaskar, M., Genest, B., Gimbert, H.: Controlling a population. In: Proceedings of CONCUR: Concurrency Theory, volume 85 of LIPIcs, pp. 12:1–12:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

    Google Scholar 

  6. Chatterjee, K., Doyen, L.: Computation tree logic for synchronization properties. In: Proc. of ICALP: Automata, Languages, and Programming, volume 55 of LIPIcs, pp. 98:1–98:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

    Google Scholar 

  7. Chatterjee, K., Henzinger, T.A.: A survey of stochastic \(\omega \)-regular games. J. Comput. Syst. Sci. 78(2), 394–413 (2012)

    Article  MathSciNet  Google Scholar 

  8. Colcombet, T., Fijalkow, N., Ohlmann, P.: Controlling a random population. In: FoSSaCS 2020. LNCS, vol. 12077, pp. 119–135. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45231-5_7

    Chapter  Google Scholar 

  9. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J. ACM 42(4), 857–907 (1995)

    Article  MathSciNet  Google Scholar 

  10. de Alfaro, L.: Formal verification of probabilistic systems. Ph.D. thesis, Stanford University (1997)

    Google Scholar 

  11. de Alfaro, L., Henzinger, T.A.: Concurrent omega-regular games. In: Proceedings. of LICS: Logic in Computer Science, pp. 141–154. IEEE (2000)

    Google Scholar 

  12. Doyen, L., Massart, T., Shirmohammadi, M.: The complexity of synchronizing Markov decision processes. J. Comput. Syst. Sci. 100, 96–129 (2019)

    Article  MathSciNet  Google Scholar 

  13. Doyen, L., van den Bogaard, M.: Bounds for synchronizing Markov decision processes. CoRR, abs/2204.12814 (2022)

    Google Scholar 

  14. Feinberg, E., Shwartz, A. (eds.) Handbook of Markov Decision Processes - Methods and Applications. Kluwer, Boston (2002)

    Google Scholar 

  15. Gallager, R.G.: Stochastic Processes: Theory for Applications. Cambridge University Press, New York (2013)

    Google Scholar 

  16. Hermanns, H., Krčál, J., Křetínský, J.: Probabilistic Bisimulation: naturally on distributions. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 249–265. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44584-6_18

    Chapter  Google Scholar 

  17. Jancar, P., Sawa, Z.: A note on emptiness for alternating finite automata with a one-letter alphabet. Inf. Process. Lett. 104(5), 164–167 (2007)

    Article  MathSciNet  Google Scholar 

  18. Korthikanti, V.A., Viswanathan, M., Agha, G., Kwon, Y.: Reasoning about MDPs as transformers of probability distributions. In: Proceedings of QEST: Quantitative Evaluation of Systems, pp. 199–208. IEEE Computer Society (2010)

    Google Scholar 

  19. Puterman. M.L.: Markov Decision Processes. John Wiley and Sons, New York (1994)

    Google Scholar 

  20. Rabin, M.O.: Probabilistic automata. Inf. Control 6, 230–245 (1963)

    Article  Google Scholar 

  21. Shirmohammadi, M.: Qualitative analysis of probabilistic synchronizing systems. Ph.D. thesis, U. Libre de Bruxelles & École Normale Supérieure de Cachan (2014)

    Google Scholar 

  22. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state programs. In: Proceedings of FOCS, pp. 327–338. IEEE Computer Society (1985)

    Google Scholar 

Download references

Acknowledgment

The authors are grateful to Jean-François Raskin for logistical support, and to Mahsa Shirmohammadi for interesting discussions about adversarial objectives.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Doyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Doyen, L., van den Bogaard, M. (2022). Bounds for Synchronizing Markov Decision Processes. In: Kulikov, A.S., Raskhodnikova, S. (eds) Computer Science – Theory and Applications. CSR 2022. Lecture Notes in Computer Science, vol 13296. Springer, Cham. https://doi.org/10.1007/978-3-031-09574-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09574-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09573-3

  • Online ISBN: 978-3-031-09574-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics