Skip to main content

Variational Water-Wave Modeling: From Deep Water to Beaches

  • Chapter
  • First Online:
The Mathematics of Marine Modelling

Part of the book series: Mathematics of Planet Earth ((MPE,volume 9))

Abstract

The mathematical and numerical modelling of free-surface water waves is considered from the viewpoint of variational principles combined with finite-element discretisations. Luke’s classical variational principle (VP) is derived first, as opposed to Luke’s (ingenious) positing of his VP, and forms the basis for three geometric or compatible finite-element water-wave models, two of which are validated against laboratory measurements and compared. Potential-flow wave dynamics in intermediate-depth water is coupled variationally to shallow-water beach dynamics, the latter modelling breaking waves, and illustrative numerics is shown to highlight the interactions between deeper water and shallow-water waves. Throughout, photographs of intricate wave interactions are used as illustrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ablowitz, M.J. and C.W. Curtis. 2013. Conservation laws and web–solutions for the Benney–Luke equation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 469(2152).

    Google Scholar 

  • Audusse, E., F. Bouchut, M.O. Bristeau, R. Klein, and B. Perthame. 2004. A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM Journal on Scientific Computing 25: 2050–2065.

    Google Scholar 

  • Benney, D.J., and J.C. Luke. 1964. On the interactions of permanent waves of finite amplitude. Journal of Mathematics and Physics 43: 309–313.

    Google Scholar 

  • Bokhove, O. 2005. Flooding and drying in discontinuous Galerkin finite-element discretizations of shallow-water equations. Part 1: one dimension. Journal of Scientific Computing 22: 47–82.

    Google Scholar 

  • Bokhove, O., E. Gagarina, W. Zweers and A. Thornton. 2011. Bore Soliton Splash -van spektakel tot oceaangolf? Nederlands Tijdschrift voor Natuurkunde 77/12: 446–450 (In Dutch).

    Google Scholar 

  • Bokhove, O., A.J. van der Horn, D. van der Meer, A.R. Thornton, and W. Zweers. 2014. On wave-driven “shingle” beach dynamics in a table-top Hele-Shaw cell. In International conference coastal engineering proceedings, vol. 15.

    Google Scholar 

  • Bokhove, O and A. Kalogirou. 2016. Variational water wave modelling: from continuum to experiment. In Lecture notes on the theory of water waves, London mathematical society lecture notes series, vol. 426, eds. Bridges, Groves and Nicholls, 226–259.

    Google Scholar 

  • Bokhove, O., A. Kalogirou, and W. Zweers. 2019. From bore-soliton-splash to a new wave-to-wire wave-energy model. Water Waves 1: 217–258.

    Google Scholar 

  • Bridges, T.J., and N.M. Donaldson. 2011. Variational principles for water waves from the viewpoint of a time dependent moving mesh. Mathematika 57: 147–173.

    Google Scholar 

  • Bunnik, T.H.J. 2010. Benchmark workshop on numerical wave modelling—description of test cases. Technical Report 70022-1-RD.

    Google Scholar 

  • Cotter, C., and O. Bokhove. 2010. Water wave model with accurate dispersion and vertical vorticity. Peregrine Commemorative Issue. Journal of Engineering Mathematics 67: 33–54.

    Google Scholar 

  • Drazin, P.G., and R.S. Johnson. 1989. Solitons: An Introduction. Cambridge: Cambridge University Press.

    Google Scholar 

  • Dysthe, K., H.E. Krogstard, and P. Muller. 2008. Oceanic rogue waves. Annual Review of Fluid Mechanics 40: 287–310.

    Google Scholar 

  • Gagarina, E., J.J.W. van der Vegt, V.R. Ambati and O. Bokhove. 2012. A Hamiltonian Boussinesq model with horizontally sheared currents. In 3rd international symposium on shallow flows, 10. USA: Iowa City.

    Google Scholar 

  • van der Gagarina, E.J.J.W., Vegt and O. Bokhove. 2013. Horizontal circulation and jumps in Hamiltonian water wave model. Nonlinear processes in geophysics 20: 483–500.

    Google Scholar 

  • Gagarina, E., V.R. Ambati, J.J.W. van der Vegt, and O. Bokhove. 2014. Variational space-time DGFEM for nonlinear free surface waves. Journal of Computational Physics 275: 459–483.

    Google Scholar 

  • Gagarina, E., V.R. Ambati, S. Nurijanyan, J.J.W. van der Vegt, and O. Bokhove. 2016. On variational and symplectic time integrators for Hamiltonian systems. Journal of Computational Physics 306: 370–389.

    Google Scholar 

  • Gidel, F., O. Bokhove, and A. Kalogirou. 2017. Variational modelling of extreme waves through oblique interaction of solitary waves: application to Mach reflection. Nonlinear Processes in Geophysics 24: 43–60.

    Google Scholar 

  • Gidel, F. 2018. Variational water-wave models and pyramidal freak waves. Ph.D. Thesis, University of Leeds.

    Google Scholar 

  • Gidel, F., O. Bokhove T. Bunnik, G. Kapsenberg and M. Kelmanson. 2021. Experimental validation of variationally and numerically coupled wave-beach dynamics. In Preparation, based on Chapter 5 of Gidel [2018].

    Google Scholar 

  • Kadomtsev, B.B., and V.I. Petviashvili. 1970. On the stability of solitary waves in weakly dispersive media. Soviet Physics Doklad 15: 539–541.

    Google Scholar 

  • Kalogirou, A., O. Bokhove and D. Ham. 2017. Modelling of nonlinear wave-buoy dynamics using constrained variational methods. In 34th International Conference on Ocean, Offshore and Arctic Engineering–OMAE.

    Google Scholar 

  • Klaver, F. 2009. Coupling of numerical models for deep and shallow water. MSc Thesis. University of Twente, Netherlands. Supervisors: V.R. Ambati and O. Bokhove.

    Google Scholar 

  • Kristina, W.O., Bokhove and E.W.C. van Groesen. 2014. Effective coastal boundary conditions for tsunami wave run-up over sloping bathymetry. Nonlinear Processes in Geophysics 21: 987–1005.

    Google Scholar 

  • Kodama, Y. 2010. KP solitons in shallow water. Journal of Physics A: Mathematical and Theoretical 43: 434004.

    Google Scholar 

  • Lanczos, C. 1970. The variational principles of mechanics. New York: Dover Publications.

    Google Scholar 

  • Leimkühler, B., and S. Reich. 2009. Simulating hamiltonian dynamics. Cambridge: Cambridge University Press.

    Google Scholar 

  • LeVeque, R.L. 1990. Numerical methods for conservation laws, Lectures in Mathematics. Birkhäuser.

    Google Scholar 

  • Luke, J.C. 1967. A variational principle for a fluid with a free surface. Journal of Fluid Mechanics 27: 395–397.

    Google Scholar 

  • Miles, J.W. 1977. On Hamilton’s principle for surface waves. Journal of Fluid Mechanics 83: 153–158.

    Google Scholar 

  • Rathgeber, F., D.A. Ham, L. Mitchell, M. Lange, F. Luporini, A.T.T. McRae, G. Bercea, G.R. Markall, and P.H.J. Kelly. 2016. Firedrake: automating the finite element method by composing abstractions. ACM TOMS Transactions on Mathematical Software 43: 1–27.

    Google Scholar 

  • Marsden, J.E., and T.S. Ratiu. 1994. Introduction to mechanics and symmetry. Berlin: Springer.

    Google Scholar 

  • Nikolkina, I., and I. Didenkulova. 2011. Rogue waves in 2006–2010. Natural Hazards and Earth System Sciences 11: 2913–2924.

    Google Scholar 

  • Salwa, T.O., Bokhove and M. Kelmanson. 2017. Variational modelling of wave-structure interactions with an offshore wind-turbine mast. Journal of Engineering Mathematics 107: 61–85.

    Google Scholar 

  • Salwa, T. 2018. On variational modelling of wave slamming by water waves. Ph.D. thesis. http://etheses.whiterose.ac.uk/23778/

  • Thornton, A.R., A.J. van der Horn, E. Gagarina, D. van der Meer, W. Zweers, and O. Bokhove. 2014. Hele-Shaw beach creation by breaking waves. Environmental Fluid Dynamics 14: 1123–1145.

    Google Scholar 

  • Whitham, G.B. 1974. Linear and nonlinear waves. Wiley-Interscience.

    Google Scholar 

  • Zakharov, V.E. 1968. Stability of periodic waves of finite amplitude on the surface of a deep fluid. Journal of Applied Mechanics and Technical Physics 9: 190–194.

    Google Scholar 

Download references

Acknowledgements

It is a pleasure to acknowledge Colin Cotter, Elena Gagarina and Anna Kalogirou for discussing and proofreading this chapter as well as the peacefulness of the ebbing and flooding tides at Hole’s Hole in Devon. A special thank you goes to Floriane Gidel, Olivier Kimmoun and Wout Zweers for the use of their images. Funding by EU/EID project Eagre: high-seas wave-impact modelling, GA859983, is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onno Bokhove .

Editor information

Editors and Affiliations

Appendix 1: Variations in Pre-Luke’s VP

Appendix 1: Variations in Pre-Luke’s VP

While analysing the variations in (5.6), note furthermore that

$$\begin{aligned}&\int _0^T \int _{\varOmega _H}\int _0^h D\partial _t \delta \phi \,{\mathrm d}{z}\,{\mathrm d}{x}\,{\mathrm d}{y}\,{\mathrm d}{t} = \int _0^T \int _{\varOmega _H}\int _0^h -\delta \phi \partial _tD+\partial _t(D\delta \phi )\,{\mathrm d}{z}\,{\mathrm d}{x}\,{\mathrm d}{y}\,{\mathrm d}{t} \end{aligned}$$
(5.35a)
$$\begin{aligned}&= -\int _0^T \int _{\varOmega _H}\int _0^h \delta \phi \partial _tD\,{\mathrm d}{z}\,{\mathrm d}{x}\,{\mathrm d}{y}\,{\mathrm d}{t} + \int _0^T \frac{\textrm{d} }{{\mathrm d}{t}} \int _{\varOmega _h} \int _0^h D\delta \phi \,{\mathrm d}{z}\,{\mathrm d}{x}\,{\mathrm d}{y}\,{\mathrm d}{t}\nonumber \\&\qquad \qquad \qquad \quad -\int _0^T \int _{\varOmega _H} D\partial _t h\delta \phi \,{\mathrm d}{x}\,{\mathrm d}{y}\,{\mathrm d}{t}\end{aligned}$$
(5.35b)
$$\begin{aligned}&= -\int _0^T \int _{\varOmega _H}\int _0^h \delta \phi \partial _tD\,{\mathrm d}{z}\,{\mathrm d}{x}\,{\mathrm d}{y}\,{\mathrm d}{t} -\int _0^T \int _{\varOmega _H} D\partial _t h\delta \phi \,{\mathrm d}{x}\,{\mathrm d}{y}\,{\mathrm d}{t}, \end{aligned}$$
(5.35c)

in which the volumetric contribution at \(t=0\) and \(t=T\) cancels, since \(\delta \phi (x,y,z,0)=\delta \phi (x,y,z,T)=0\), and by assuming for the moment that \(\varOmega _h\) is time-independent. If \(\varOmega _h\) is time-dependent, for example in the presence of a wavemaker, then an extra term will emerge.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bokhove, O. (2022). Variational Water-Wave Modeling: From Deep Water to Beaches. In: Schuttelaars, H., Heemink, A., Deleersnijder, E. (eds) The Mathematics of Marine Modelling. Mathematics of Planet Earth, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-031-09559-7_5

Download citation

Publish with us

Policies and ethics