Skip to main content

Light, Circadian Rhythms and Health

  • Chapter
  • First Online:
Therapeutic Landscape Design

Abstract

Among the possible mechanisms utilized by living organisms to favor synchronization and adaptation to the environment, circadian (around 24 h) rhythms represent a crucial point. The day-night cycle, with light–dark alternation, is the strongest external circadian synchronizer for humans, capable to deeply influence also human individual differences (chronotype). However, since the 19th century, artificial light assumed an important role in regulating human life, including working activities (shift work). On one hand, satellite images have documented a worldwide increment of night-time illumination, and exposure to artificial Light-At-Night (LAN) is associated with a variegate spectrum of health problems. On the other hand, the growing use (and abuse) of technological devices (mostly emitting blue light, a powerful melatonin inhibitor), is transforming our society toward a progressive ‘eveningness’, with consequences on chronotype, sleep, lifestyle habits, and health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manfredini R, Boari B, Salmi R, Malagoni AM, Manfredini F (2007). Circadian rhythm effects on cardiovascular and other stress-related events. In: George Fink, Encyclopedia of Stress, vol 1, 2nd edn. Academic Press, Oxford, pp 500–505

    Google Scholar 

  2. West AC, Smith L, Ray DW, Loudon ASI, Brown TM, Bechtold DA (2017) Misalignment with the external light environment drives metabolic and cardiac dysfunction. Nat Commun 8:417

    Article  Google Scholar 

  3. Bedrosian TA, Nelson RJ (2017) Timing of light exposure affects mood and brain circuits. Transl Psychiatry 7:e1017

    Article  CAS  Google Scholar 

  4. Cohen SE, Golden SS (2015) Circadian rhythms in cyanobacteria. Microbiol Mol Biol Rev 79:373–385

    Article  CAS  Google Scholar 

  5. Dunlap JC, Loros JJ (2017) Making time: conservation of biological clocks from fungi to animals. Microbiol Spectr 5:3

    Article  Google Scholar 

  6. Mohawk JA, Takahashi JS (2011) Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators. Trends Neurosci 34:349–358

    Article  CAS  Google Scholar 

  7. Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247:975–978

    Article  CAS  Google Scholar 

  8. Crnko S, Cour M, Van Laake LW, Lecour S (2018) Vasculature on the clock: circadian rhythm and vascular dysfunction. Vascul Pharmacol 108:1–7

    Article  CAS  Google Scholar 

  9. Horne JA, Ostberg O (1976) A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol 4:97–110

    CAS  Google Scholar 

  10. Ashkenazi IE, Reinberg AE, Motohashi Y (1997) Interindividual differences in the flexibility of human temporal organization: pertinence to jetlag and shiftwork. Chronobiol Int 14:99–113

    Article  CAS  Google Scholar 

  11. Paine SJ, Gander PH, Travier N (2006) The epidemiology of morningness/eveningness: influence of age, gender, ethnicity, and socioeconomic factors in adults (30–49 years). J Biol Rhythms 21:68–76

    Article  Google Scholar 

  12. Fabbian F, Zucchi B, De Giorgi A et al (2016) Chronotype, gender and general health. Chronobiol Int 33:863–882

    Article  CAS  Google Scholar 

  13. Freedman MS, Lucas RJ, Soni B et al (1999) Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284:502–504

    Article  CAS  Google Scholar 

  14. Dhande OS, Stafford BK, Lim JA, Huberman AD (2015) Contributions of retinal ganglion cells to subcortical visual processing and behaviors. Annu Rev Vis Sci 1:291–328

    Article  Google Scholar 

  15. Paul KN, Saafir TN, Tosini G (2009) The role of retinal photoreceptors in the regulation of circadian rhythms. Rev Endocr Metab Disord 10:271–278

    Article  Google Scholar 

  16. Quera Salva MA, Hartley S, Léger D, Dauvilliers YA (2017) Non-24 h sleep-wake rhythm disorder in the totally blind: diagnosis and management. Front Neurol 8:686

    Article  Google Scholar 

  17. Stevens RG, Zhu Y (2015). Electric light, particularly at night, disrupts human circadian rhythmicity: is that a problem? Philos Trans R Soc Lond B Biol Sci 370:1667

    Google Scholar 

  18. LeGates TA, Fernandez DC, Hattar S (2014) Light as a central modulator of circadian rhythms, sleep and affect. Nat Rev Neurosci 15:443–454

    Article  CAS  Google Scholar 

  19. Tosini G, Ferguson I, Tsubota K (2016) Effects of blue light on the circadian system and eye physiology. Mol Vis 22:61–72

    CAS  Google Scholar 

  20. Kuse Y, Ogawa K, Tsuruma K, Shimazawa M, Hara H (2014) Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light. Sci Rep 4:5223

    Article  CAS  Google Scholar 

  21. Klein R, Klein BEK, Jensen SC, Cruickshanks KJ (1998) The relationship of ocular factors to the incidence and progression of age-related maculopathy. Arch Ophthalmol 116:506–513

    Article  CAS  Google Scholar 

  22. Bin YS, Marshall NS, Glozier N (2012) Secular trends in adult sleep duration: systematic review. Sleep Med Rev 16:223–230

    Article  Google Scholar 

  23. Roenneberg T, Allebrandt KV, Merrow M, Vetter C (2012) Social jetlag and obesity. Curr Biol 22:939–943

    Article  CAS  Google Scholar 

  24. Rybnikova NA, Haim A, Portnov BA (2016) Does artificial light-at-night (ALAN) exposure contribute to the worldwide obesity pandemic? Int J Obes (London) 40:815–823

    Article  CAS  Google Scholar 

  25. Manfredini R, Cappadona R, Modesti PA, Fabbian F (2018) Daylight saving time and cardiovascular health. Int Emerg Med 13:641–646

    Article  Google Scholar 

  26. Manfredini R, Fabbian F, De Giorgi A et al (2018) Daylight saving time and myocardial infarction: should be we worried? A review of the evidence. Eur Rev Med Pharmacol Sci 22:750–755

    CAS  Google Scholar 

  27. Falchi F, Cinzano P, Elvidge CD, Keith DM, Haim A (2011) Limiting the impact of light pollution on human health, environment and stellar visibility. J Environ Manag 92:2714–2722

    Article  CAS  Google Scholar 

  28. Ohayon MM, Milesi C (2016) Artificial outdoor nighttime lights associate with altered sleep behavior in the American general population. Sleep 39:1311–1320

    Article  Google Scholar 

  29. Zielinska-Dabkowska K (2018) Make lighting healthier. Nature 553:274–276

    Article  CAS  Google Scholar 

  30. Hysing M, Pallesen S, Stormark KM, Jakobsen R, Lundervold AJ, Sivertsen B (2015) Sleep and use of electronic devices in adolescence: results from a large population-based study. BMJ Open 5:e006748

    Article  Google Scholar 

  31. Cajochen C, Frey S, Anders D et al (2011) Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance. J Appl Physiol 110:1432–1438

    Article  Google Scholar 

  32. Wood B, Rea MS, Plitnick B, Figueiro MG (2013) Light level and duration of exposure determine the impact of self-luminous tablets on melatonin suppression. Appl Ergon 2013(44):237–240

    Article  Google Scholar 

  33. Higuchi S, Nagafuchi Y, Lee SI, Harada T (2014) Influence of light at night on melatonin suppression in children. J Clin Endocrinol Metab 2014(99):3298–3303

    Article  Google Scholar 

  34. Changa AM, Aeschbacha D, Jeanne F, Duffya JF, Czeisler CA (2015) Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proc Natl Acad Sci 112:1232–1237

    Article  Google Scholar 

  35. LeBourgeois MK, Hale L, Chang AM et al (2017) Digital media and sleep in childhood and adolescence. Pediatrics 140:S92–S96

    Article  Google Scholar 

  36. Chassiakos RY, Radesky J, Christakis D et al (2016). AAP Council on Communications and Media. Child Adolesc Digit Med Pediatr 138:e20162593

    Google Scholar 

  37. American Academy of Pediatrics (2016) AAP Council on Communications and Media. Media School-Aged Child Adolesc Pediatr 138:e20162592

    Google Scholar 

  38. Korompeli A, Muurlink O, Kavrochorianou N, Katsoulas T, Fildissis G, Baltopoulos G (2017) Circadian disruption of ICU patients: a review of pathways, expression, and interventions. J Crit Care 38:269–277

    Article  Google Scholar 

  39. Bion V, Lowe AS, Puthucheary Z, Montgomery H (2018) Reducing sound and light exposure to improve sleep on the adult intensive care unit: an inclusive narrative review. J Intensive Care Soc 19:138–146

    Article  Google Scholar 

  40. Brambilla A, Rebecchi A, Capolongo S (2019). Evidence based hospital design. A literature review of the recent publications about the EBD impact of built environment on hospital occupants’ and organizational outcomes. Ann Ig 31:165–180

    Google Scholar 

  41. Esquiva G, Lax P, Pérez-Santonja JJ, García-Fernández JM, Cuenca N (2017) Loss of melanopsin-expressing ganglion cell subtypes and dendritic degeneration in the aging human retina. Front Aging Neurosci 9:79

    Article  Google Scholar 

  42. Daneault V, Hébert M, Albouy G et al (2014) Aging reduces the stimulating effect of blue light on cognitive brain functions. Sleep 37:85–96

    Article  Google Scholar 

  43. Lockley SW, Gooley JJ (2006) Circadian photoreception: spotlight on the brain. Curr Biol 16:R795–R797

    Article  CAS  Google Scholar 

  44. Hopkins S, Morgan PL, Schlangen LJM, Williams P, Skene DJ, Middleton B (2017) Blue-enriched lighting for older people living in care homes: effect on activity, actigraphic sleep, mood and alertness. Curr Alzheimer Res 14:1053–1062

    Article  CAS  Google Scholar 

  45. Martin D, Hurlbert A, Cousins DA (2018) Sleep disturbance and the change from white to red lighting at night on old age psychiatry wards: a quality improvement project. Arch Psychiatr Nurs 32:379–383

    Article  Google Scholar 

  46. Motamedzadeh M, Golmohammadi R, Kazemi R, Heidarimoghadam R (2017) The effect of blue-enriched white light on cognitive performances and sleepiness of night-shift workers: a field study. Physiol Behav 177:208–214

    Article  CAS  Google Scholar 

  47. Capolongo S, Lemaire N, Oppio A, Buffoli M, Roue Le Gall A (2016) Action planning for healthy cities: the role of multi-criteria analysis, developed in Italy and France, for assessing health performances in land-use plans and urban development projects. Epidemiol Prev 40:257–264

    Google Scholar 

  48. D’Alessandro D, Arletti S, Azara A et al (2017) Strategies for disease prevention and health promotion in urban areas: the Erice 50 Charter. Ann Ig 29:481–493

    Google Scholar 

  49. Mezzoiuso AG, Gola M, Rebecchi A et al (2017) Indoors and health: results of a systematic literature review assessing the potential health effects of living in basements. Acta Biomed 88:375–382

    Google Scholar 

  50. Gola M, Signorelli C, Buffoli M, Rebecchi A, Capolongo S (2017) Local health rules and building regulations: a survey on local hygiene and building regulations in italian municiples. Ann Ist Super Sanità 53:223–230

    Google Scholar 

  51. Oxford University Press. Green space. From Oxford Living Dictionaries (2017). https://en.oxforddictionaries.com/definition/green_space

  52. Pringuey-Criou F (2015) Healing garden: primary concept. Encephale 41:454–459

    Article  CAS  Google Scholar 

  53. George DR, Rovniak LS, Kraschnewski JL, Hanson R, Sciamanna CN (2015) A growing opportunity: community gardens affiliated with US hospitals and academic health centers. Prev Med Rep 2:35–39

    Article  Google Scholar 

  54. Buffoli M et al (2018) Green SOAP. A calculation model for improving outdoor air quality in urban contexts and evaluating the benefits to the population’s health status. In: Mondini G et al (eds) Integrated evaluation for the management of contemporary cities. Springer, Green Energy and Technology, pp 453–467

    Google Scholar 

  55. Mroczek J, Mikitarian G, Vieira EK, Rotarius T (2005) Hospital design and staff perceptions: an exploratory analysis. Health Care Manag (Frederick) 24:233–244

    Article  Google Scholar 

  56. D’Alessandro D et al (2015) Green areas and public health: improving wellbeing and physical activity in the urban context. Epidemiol Prev 39(4 Suppl 1):8–13

    Google Scholar 

  57. Rivasseau Jonveaux T, Batt M, Fescharek R et al (2013) Healing gardens and cognitive behavioral units in the management of Alzheimer’s disease patients: the Nancy experience. J Alzheimers Dis 34:325–338

    Article  Google Scholar 

  58. Gonzalez MT, Kirkevold M (2014) Benefits of sensory garden and horticultural activities in dementia care: a modified scoping review. J Clin Nurs 23:2698–2715

    Article  Google Scholar 

  59. Dahlkvist E, Hartig T, Nilsson A, Högberg H, Skovdahl K, Engström M (2016) Garden greenery and the health of older people in residential care facilities: a multi-level cross-sectional study. J Adv Nurs 72:2065–2076

    Article  Google Scholar 

  60. McCormick R (2017) Does access to green space impact the mental well-being of children: a systematic review. J Pediatr Nurs 37:3–7

    Article  Google Scholar 

  61. Hatori M, Gronfier C, Van Gelder RN et al (2017) Global rise of potential health hazards caused by blue light-induced circadian disruption in modern aging societies. NPJ Aging Mech Dis 3:9

    Article  Google Scholar 

  62. Stevens RG, Brainard GC, Blask DE, Lockley SW, Motta ME (2013) Adverse health effects of nighttime lighting: comments on American Medical Association policy statement. Am J Prev Med 45:343–346

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Manfredini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manfredini, R., Cappadona, R., Tiseo, R., Bagnaresi, I., Fabbian, F. (2023). Light, Circadian Rhythms and Health. In: Capolongo, S., Botta, M., Rebecchi, A. (eds) Therapeutic Landscape Design. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-031-09439-2_8

Download citation

Publish with us

Policies and ethics