Skip to main content

Integrating Graph Convolutional Networks (GCNNs) and Long Short-Term Memory (LSTM) for Efficient Diagnosis of Autism

  • Conference paper
  • First Online:
Artificial Intelligence in Medicine (AIME 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13263))

Included in the following conference series:

  • 1814 Accesses

Abstract

Artificial intelligence (AI) has a wide range of practices in biotechnology, specifically for automated diagnosis of behavioural disorders, including autism spectrum disorder (ASD). With the rise and severity of this disorder, machine learning and deep learning methods have proven to provide efficient and less invasive diagnosis for individuals with ASD. Although various deep learning techniques have been employed to achieve a more robust diagnosis for ASD, hybrid graph convolutional neural networks (GCNNs) for ASD diagnosis are not addressed prominently in the literature; GCNNs have received significant adoption in image processing. This paper proposes and evaluates a hybrid deep learning model that combines the power of GCNNs and long short-term memory (LSTM) for ASD diagnosis. The proposed GCNN-LSTM model provides an efficient diagnosis for ASD by identifying the brain functionality between anterior and posterior areas of the brain. The proposed GCNN-LSTM model and other baseline classifiers are trained and tested on various ASD-related fMRI brain images from the Autism Brain Imaging Data Exchange (ABIDE) database. Experimental results show that the proposed model achieved an accuracy of up to 75%, AUC up to 80%, Precision up to 82%, Recall of up to 85%, and F1-score of up to 83%, thus outperforming the baseline classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barlow, D.H., et al.: Abnormal psychology: an integrative approach, 8th edn. Nelson Education Ltd., Toronto, Ontario (2018)

    Google Scholar 

  2. Pagnozzi, A.M., et al.: A systematic review of structural MRI biomarkers in autism spectrum disorder: a machine learning perspective. Int. J. Dev. Neurosci. 71, 68–82 (2018)

    Article  Google Scholar 

  3. Bone, D., et al.: Applying machine learning to facilitate autism diagnostics: pitfalls and promises. J. Autism Dev. Disord. 45(5), 1121–1136 (2015)

    Article  Google Scholar 

  4. Hyde, K.K., et al.: Applications of supervised machine learning in autism spectrum disorder research: a review. Rev. J. Autism Dev. Disord. 6(2), 128–146 (2019)

    Article  Google Scholar 

  5. Ismail, M., et al.: A new deep-learning approach for early detection of shape variations in autism using structural MRI. In: 2017 IEEE International Conference on Image Processing, pp. 1057–1061 (2017)

    Google Scholar 

  6. Heinsfeld, A.S., et al.: Identification of autism spectrum disorder using deep learning and the ABIDE dataset. NeuroImage Clin. 17, 16–23 (2018)

    Article  Google Scholar 

  7. Shahamat, H., Abadeh, M.S.: Brain MRI analysis using a deep learning-based evolutionary approach. Neural Netw. 126, 218–234 (2020)

    Article  Google Scholar 

  8. Anirudh, R., Thiagarajan, J.J.: Bootstrapping graph convolutional neural networks for autism spectrum disorder classification. In: ICASSP, pp. 3197–3201 (2019)

    Google Scholar 

  9. Liu, Z., Zhou, J.: Introduction to graph neural networks. Synth. Lect. Artif. Intell. Mach. Learn. 14(2), 1–127 (2020)

    MathSciNet  MATH  Google Scholar 

  10. Chen, J., Xu, X., Wu, Y., Zheng, H.: GC-LSTM: graph convolution embedded LSTM for dynamic link prediction. arXiv preprint arXiv:1812.04206 (2019)

  11. Plitt, M., et al.: Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards. NeuroImage Clin. 7, 359–366 (2015)

    Article  Google Scholar 

  12. Yamagata, B., et al.: Machine learning approach to identify a resting-state functional connectivity pattern serving as an endophenotype of autism spectrum disorder. Brain Imaging Behav. 13(6), 1689–1698 (2018). https://doi.org/10.1007/s11682-018-9973-2

    Article  Google Scholar 

  13. Chen, C.P., et al.: Diagnostic classification of intrinsic functional connectivity high-lights somatosensory, default mode, and visual regions in autism. NeuroImage Clin. 8, 238–245 (2015)

    Article  Google Scholar 

  14. Zhou, Y., Yu, F., Duong, T.: Multiparametric MRI characterization and prediction in autism spectrum disorder using graph theory and machine learning. PLoS ONE 9(6), e90405 (2014)

    Article  Google Scholar 

  15. Wang, C., Xiao, Z., Wu, J.: Functional connectivity-based classification of autism and control using SVM-RFECV on rs-fMRI data. Phys. Med. 65, 99–105 (2019)

    Article  Google Scholar 

  16. Wang, C., Xiao, Z., Wang, B., Wu, J.: Identification of autism based on SVM-RFE and stacked sparse auto-encoder. IEEE Access 7, 118030–118036 (2019)

    Article  Google Scholar 

  17. Stevens, E., et al.: Identification and analysis of behavioral phenotypes in autism spectrum disorder via unsupervised machine learning. Int. J. Med. Inform. 129, 29–36 (2019)

    Article  Google Scholar 

  18. Soussia, M., Rekik, I.: Unsupervised manifold learning using high-order morphological brain networks derived from T1-w MRI for autism diagnosis. Front. Neuroinformatic 12, 70 (2018)

    Article  Google Scholar 

  19. Yang, M., et al.: Attention based semi-supervised dictionary learning for diagnosis of autism spectrum disorders. In: 2019 IEEE International Conference on Multimedia & Expo Workshops (ICMEW) (2019)

    Google Scholar 

  20. Dong, H., et al.: Subject sensitive EEG discrimination with fast reconstructable CNN driven by reinforcement learning: a case study of ASD. Neurocomputing 449, 136–145 (2021)

    Article  Google Scholar 

  21. Rane, S., et al.: Developing predictive imaging biomarkers using whole-brain classifiers: application to the ABIDE I dataset. Res. Ideas Outcomes 3, e12733 (2017)

    Article  Google Scholar 

  22. Sen, B., Borle, N.C., Greiner, R., Brown, M.R.: A general prediction model for the detection of ADHD and Autism using structural and functional MRI. PLoS ONE 13(4), e0194856 (2018)

    Article  Google Scholar 

  23. Guo, X., et al.: Diagnosing autism spectrum disorder from brain resting-state functional connectivity patterns using a deep neural network with a novel feature selection method. Front. Neurosci. 11, 460 (2017)

    Article  Google Scholar 

  24. Thomas, R.M., et al.: Classifying autism spectrum disorder using the temporal statistics of resting-state functional MRI data with 3D convolutional neural networks. Front. Psychiatry 11, 440 (2020)

    Article  Google Scholar 

  25. El-Gazzar, A., Quaak, M., Cerliani, L., Bloem, P., van Wingen, G., Mani Thomas, R.: A hybrid 3DCNN and 3DC-LSTM based model for 4D spatio-temporal fMRI data: an ABIDE autism classification. In: Zhou, L., et al. (eds.) OR 2.0/MLCN -2019. LNCS, vol. 11796, pp. 95–102. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32695-1_11

    Chapter  Google Scholar 

  26. Akhavan Aghdam, M., Sharifi, A., Pedram, M.M.: Combination of rs-fMRI and sMRI Data to Discriminate Autism Spectrum Disorders in Young Children Using Deep Belief Network. J. Digit. Imaging 31(6), 895–903 (2018). https://doi.org/10.1007/s10278-018-0093-8

    Article  Google Scholar 

  27. Li, H., Parikh, N.A., He, L.: A novel transfer learning approach to enhance deep neural network classification of brain functional connectomes. Front. Neurosci. 12, 491 (2018)

    Article  Google Scholar 

  28. Parisot, S., et al.: Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer’s disease. Med. Image Anal. 48, 117–130 (2018)

    Article  Google Scholar 

  29. Vajar, P., Emmanuel, A.L., Ghasemieh, A., Bahrami, P., Kashef, R.: The internet of medical things (IoMT): a vision on learning, privacy, and computing. In: 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), pp. 1–7. IEEE (2021)

    Google Scholar 

  30. Kashef, R.: ECNN: enhanced convolutional neural network for efficient diagnosis of autism spectrum disorder. Cogn. Syst. Res. 71, 41–49 (2022)

    Article  Google Scholar 

  31. Sewani, H., Kashef, R.: An autoencoder-based deep learning classifier for efficient diagnosis of autism. Children 7(10), 182 (2020)

    Article  Google Scholar 

  32. Shirazi, Z.A., de Souza, C.P., Kashef, R., Rodrigues, F.F.: Deep learning in the healthcare industry: theory and applications. In: Computational Intelligence and Soft Computing Applications in Healthcare Management Science, pp. 220–245 (2020)

    Google Scholar 

  33. Roy, S., Kiral-Kornek, I., Harrer, S.: ChronoNet: a deep recurrent neural network for abnormal EEG identification. In: Riaño, D., Wilk, S., ten Teije, A. (eds.) AIME 2019. LNCS (LNAI), vol. 11526, pp. 47–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21642-9_8

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kashaf Masood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Masood, K., Kashef, R. (2022). Integrating Graph Convolutional Networks (GCNNs) and Long Short-Term Memory (LSTM) for Efficient Diagnosis of Autism. In: Michalowski, M., Abidi, S.S.R., Abidi, S. (eds) Artificial Intelligence in Medicine. AIME 2022. Lecture Notes in Computer Science(), vol 13263. Springer, Cham. https://doi.org/10.1007/978-3-031-09342-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09342-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09341-8

  • Online ISBN: 978-3-031-09342-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics