Skip to main content

Biochar: A New Emerging Tool to Mitigate Abiotic Stresses and Its Effect on Soil Properties

  • Chapter
  • First Online:
Secondary Agriculture

Abstract

Biochar is carbon rich product that is developed under oxygen deficit heating known as pyrolysis. Presently, biochar application in agriculture is gaining interest and attention in alleviating biotic and abiotic. Salinity and heavy metal stresses are significant abiotic stresses which hinder crop production. Here, in this chapter, we have discussed in detail the role of biochar in reducing abiotic stresses and their effect on crop growth. In addition, a brief sketch of biochar production methods and factors affecting its quality have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas, F., Hammad, H. M., Fahad, S., Cerdà, A., Rizwan, M., Farhad, W., Ehsan, S., & Bakhat, H. F. (2017). Agroforestry: A sustainable environmental practice for carbon sequestration under the climate change scenarios – A review. Environmental Science and Pollution Research, 24(12), 11177–11191.

    Article  CAS  PubMed  Google Scholar 

  • Agbna, H., Ali, G., Albashir, E., Mohammed, M., Bakir, M., Osman, A., & Elshaikh, A. (2017). Effect of biochar on some soil properties and tomato growth under saline water conditions. International Journal of Scientific and Engineering Research, 8, 24–28.

    Google Scholar 

  • Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., & Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–33.

    Article  CAS  PubMed  Google Scholar 

  • Akhtar, S. S., Andersen, M. N., & Liu, F. (2015). Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agricultural Water Management, 158, 61–68.

    Article  Google Scholar 

  • Ali, A., & Yan, E.-R. (2017). The forest strata-dependent relationship between biodiversity and aboveground biomass within a subtropical forest. Forest Ecology and Management, 401, 125–134.

    Article  Google Scholar 

  • Arora, N., Patel, A., Sharma, M., Mehtani, J., Pruthi, P. A., Pruthi, V., & Poluri, K. M. (2017). Insights into the enhanced lipid production characteristics of a fresh water microalga under high salinity conditions. Industrial & Engineering Chemistry Research, 56(25), 7413–7421.

    Article  CAS  Google Scholar 

  • Artiola, J. F., Rasmussen, C., & Freitas, R. (2012). Effects of a biochar-amended alkaline soil on the growth of romaine lettuce and bermudagrass. Soil Science, 177(9), 561–570.

    Article  CAS  Google Scholar 

  • Atkinson, C. J., Fitzgerald, J. D., & Hipps, N. A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant and Soil, 337(1), 1–18.

    Article  CAS  Google Scholar 

  • Baronti, S., Vaccari, F., Miglietta, F., Calzolari, C., Lugato, E., Orlandini, S., Pini, R., Zulian, C., & Genesio, L. (2014). Impact of biochar application on plant water relations in Vitis vinifera (L.). European Journal of Agronomy, 53, 38–44.

    Article  CAS  Google Scholar 

  • Bartell, F., & Miller, E. (1923). Adsorption by activated sugar charcoal. II1, 2. Journal of the American Chemical Society, 45(5), 1106–1115.

    Article  CAS  Google Scholar 

  • Batool, A., Taj, S., Rashid, A., Khalid, A., Qadeer, S., Saleem, A. R., & Ghufran, M. A. (2015). Potential of soil amendments (Biochar and Gypsum) in increasing water use efficiency of Abelmoschus esculentus L. Moench. Frontiers in Plant Science, 6, 733.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhaduri, D., Saha, A., Desai, D., & Meena, H. (2016). Restoration of carbon and microbial activity in salt-induced soil by application of peanut shell biochar during short-term incubation study. Chemosphere, 148, 86–98.

    Article  CAS  PubMed  Google Scholar 

  • Bodner, G., Nakhforoosh, A., & Kaul, H.-P. (2015). Management of crop water under drought: A review. Agronomy for Sustainable Development, 35(2), 401–442.

    Article  Google Scholar 

  • Briggs, J. M., Knapp, A. K., Blair, J. M., Heisler, J. L., Hoch, G. A., Lett, M. S., & McCarron, J. K. (2005). An ecosystem in transition: Causes and consequences of the conversion of mesic grassland to shrubland. Bioscience, 55(3), 243–254.

    Article  Google Scholar 

  • Britt, P. F., Buchanan, A., Cooney, M. J., & Martineau, D. R. (2000). Flash vacuum pyrolysis of methoxy-substituted lignin model compounds. The Journal of Organic Chemistry, 65(5), 1376–1389.

    Article  CAS  PubMed  Google Scholar 

  • Brockhoff, S. R., Christians, N. E., Killorn, R. J., Horton, R., & Davis, D. D. (2010). Physical and mineral-nutrition properties of sand-based turfgrass root zones amended with biochar. Agronomy Journal, 102(6), 1627–1631.

    Article  Google Scholar 

  • Bruun, E. W., Petersen, C. T., Hansen, E., Holm, J. K., & Hauggaard-Nielsen, H. (2014). Biochar amendment to coarse sandy subsoil improves root growth and increases water retention. Soil Use and Management, 30(1), 109–118.

    Article  Google Scholar 

  • Chaves, M. M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Annals of Botany, 103(4), 551–560.

    Article  CAS  PubMed  Google Scholar 

  • Dahlawi, S., Naeem, A., Rengel, Z., & Naidu, R. (2018). Biochar application for the remediation of salt-affected soils: Challenges and opportunities. Science of the Total Environment, 625, 320–335.

    Article  PubMed  Google Scholar 

  • Ding, W., Dong, X., Ime, I. M., Gao, B., & Ma, L. Q. (2014). Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Chemosphere, 105, 68–74.

    Article  CAS  PubMed  Google Scholar 

  • Doerr, S., Woods, S., Martin, D., & Casimiro, M. (2009). ‘Natural background’ soil water repellency in conifer forests of the North-Western USA: Its prediction and relationship to wildfire occurrence. Journal of Hydrology, 371(1–4), 12–21.

    Article  Google Scholar 

  • Drake, J. A., Cavagnaro, T. R., Cunningham, S. C., Jackson, W. R., & Patti, A. F. (2016). Does biochar improve establishment of tree seedlings in saline sodic soils? Land Degradation & Development, 27(1), 52–59.

    Article  Google Scholar 

  • Dugan, J. P., & Komives, S. R. (2010). Influences on college students’ capacities for socially responsible leadership. Journal of College Student Development, 51(5), 525–549.

    Article  Google Scholar 

  • FAO, W. (2009). Principles and methods for the risk assessment of chemicals in food. Environmental Health Criteria, 240.

    Google Scholar 

  • Farhangi-Abriz, S., & Torabian, S. (2018). Biochar improved nodulation and nitrogen metabolism of soybean under salt stress. Symbiosis, 74(3), 215–223.

    Article  CAS  Google Scholar 

  • Fazal, A., & Bano, A. (2016). Role of plant growth-promoting rhizobacteria (PGPR), biochar, and chemical fertilizer under salinity stress. Communications in Soil Science and Plant Analysis, 47(17), 1985–1993.

    Article  CAS  Google Scholar 

  • Fiaz, K., Danish, S., Younis, U., Malik, S., Raza Shah, M., & Niaz, S. (2014). Drought impact on Pb/Cd toxicity remediated by biochar in Brassica campestris. Journal of Soil Science and Plant Nutrition, 14(4), 845–854.

    Google Scholar 

  • Gama, P., Inanaga, S., Tanaka, K., & Nakazawa, R. (2007). Physiological response of common bean (Phaseolus vulgaris L.) seedlings to salinity stress. African Journal of Biotechnology, 6(2).

    Google Scholar 

  • Gull, R., Bhat, T. A., Sheikh, T. A., Wani, O. A., Fayaz, S., Nazir, A., Saad, A., & Jan, S. (2020). Climate change impact on pulse in India-A. Journal of Pharmacognosy and Phytochemistry, 9(4), 3159–3166.

    CAS  Google Scholar 

  • Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. International Journal of Genomics, 2014, 701596.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ha, E., Ikhajiagba, B., Bamidele, J., & Ogic-Odia, E. (2008). Salinity effects on young healthy seedling of kyllingia peruviana collected from escravos, Delta state. Global Journal of Environmental Research, 2(2), 74–88.

    Google Scholar 

  • Haefele, S., Konboon, Y., Wongboon, W., Amarante, S., Maarifat, A., Pfeiffer, E., & Knoblauch, C. (2011). Effects and fate of biochar from rice residues in rice-based systems. Field Crops Research, 121(3), 430–440.

    Article  Google Scholar 

  • Haider, G., Koyro, H.-W., Azam, F., Steffens, D., Müller, C., & Kammann, C. (2015). Biochar but not humic acid product amendment affected maize yields via improving plant-soil moisture relations. Plant and Soil, 395(1), 141–157.

    Article  CAS  Google Scholar 

  • Hansen, V., Hauggaard-Nielsen, H., Petersen, C. T., Mikkelsen, T. N., & Müller-Stöver, D. (2016). Effects of gasification biochar on plant-available water capacity and plant growth in two contrasting soil types. Soil and Tillage Research, 161, 1–9.

    Article  Google Scholar 

  • Herath, H., Camps-Arbestain, M., & Hedley, M. (2013). Effect of biochar on soil physical properties in two contrasting soils: An Alfisol and an Andisol. Geoderma, 209, 188–197.

    Article  Google Scholar 

  • Inyang, M. I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., Pullammanappallil, P., Ok, Y. S., & Cao, X. (2016). A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology, 46(4), 406–433.

    Article  CAS  Google Scholar 

  • Jan, B., Bhat, T. A., Sheikh, T. A., Wani, O. A., Bhat, M. A., Nazir, A., Fayaz, S., Mushtaq, T., Farooq, A., & Wani, S. (2020). Agronomic bio-fortification of rice and maize with iron and zinc: A review. International Research Journal of Pure and Applied Chemistry, 21, 28–37.

    Article  Google Scholar 

  • Jeffery, S., Verheijen, F. G., van der Velde, M., & Bastos, A. C. (2011). A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems & Environment, 144(1), 175–187.

    Article  Google Scholar 

  • Jien, S.-H., & Wang, C.-S. (2013). Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena, 110, 225–233.

    Article  CAS  Google Scholar 

  • Kanwal, S., Ilyas, N., Shabir, S., Saeed, M., Gul, R., Zahoor, M., Batool, N., & Mazhar, R. (2018). Application of biochar in mitigation of negative effects of salinity stress in wheat (Triticum aestivum L.). Journal of Plant Nutrition, 41(4), 526–538.

    Article  CAS  Google Scholar 

  • Laird, D. A., Fleming, P., Davis, D. D., Horton, R., Wang, B., & Karlen, D. L. (2010). Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma, 158(3–4), 443–449.

    Article  CAS  Google Scholar 

  • Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota–a review. Soil Biology and Biochemistry, 43(9), 1812–1836.

    Article  CAS  Google Scholar 

  • Li, L., Rowbotham, J. S., Greenwell, C. H., & Dyer, P. W. (2013). An introduction to pyrolysis and catalytic pyrolysis: Versatile techniques for biomass conversion. Elsevier.

    Google Scholar 

  • Lian, F., & Xing, B. (2017). Black carbon (biochar) in water/soil environments: Molecular structure, sorption, stability, and potential risk. Environmental Science & Technology, 51(23), 13517–13532.

    Article  CAS  Google Scholar 

  • Liu, R., Sun, W., Chao, M., Ji, C., Wang, M., & Ye, B. (2009). Leaf anatomical changes of Bruguiera gymnorrhiza seedlings under salt stress. Journal of Tropical and Subtropical Botany, 17(2), 169–175.

    Google Scholar 

  • Mansoor, S., Kour, N., Manhas, S., Zahid, S., Wani, O. A., Sharma, V., Wijaya, L., Alyemeni, M. N., Alsahli, A. A., & El-Serehy, H. A. (2021). Biochar as a tool for effective management of drought and heavy metal toxicity. Chemosphere, 271, 129458.

    Article  CAS  PubMed  Google Scholar 

  • Mosa, A., El-Banna, M. F., & Gao, B. (2016). Biochar filters reduced the toxic effects of nickel on tomato (Lycopersicon esculentum L.) grown in nutrient film technique hydroponic system. Chemosphere, 149, 254–262.

    Article  CAS  PubMed  Google Scholar 

  • Nadeem, S. M., Zahir, Z. A., Naveed, M., & Nawaz, S. (2013). Mitigation of salinity-induced negative impact on the growth and yield of wheat by plant growth-promoting rhizobacteria in naturally saline conditions. Annals of Microbiology, 63(1), 225–232.

    Article  CAS  Google Scholar 

  • Nguyen, D., Rieu, I., Mariani, C., & van Dam, N. M. (2016). How plants handle multiple stresses: Hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Molecular Biology, 91(6), 727–740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noman, A., Ali, S., Naheed, F., Ali, Q., Farid, M., Rizwan, M., & Irshad, M. K. (2015). Foliar application of ascorbate enhances the physiological and biochemical attributes of maize (Zea mays L.) cultivars under drought stress. Archives of Agronomy and Soil Science, 61(12), 1659–1672.

    Article  CAS  Google Scholar 

  • Ok, E. A. (2011). Real analysis with economic applications. Princeton University Press.

    Book  Google Scholar 

  • Paneque, M., José, M., Franco-Navarro, J. D., Colmenero-Flores, J. M., & Knicker, H. (2016). Effect of biochar amendment on morphology, productivity and water relations of sunflower plants under non-irrigation conditions. Catena, 147, 280–287.

    Article  CAS  Google Scholar 

  • Pressler, Y., Foster, E. J., Moore, J. C., & Cotrufo, M. F. (2017). Coupled biochar amendment and limited irrigation strategies do not affect a degraded soil food web in a maize agroecosystem, compared to the native grassland. GCB Bioenergy, 9(8), 1344–1355.

    Article  Google Scholar 

  • Qadir, M., Quillérou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R. J., Drechsel, P., & Noble, A. D. (2014). Economics of salt-induced land degradation and restoration. Natural Resources Forum.

    Book  Google Scholar 

  • Qian, L., & Chen, B. (2014). Interactions of aluminum with biochars and oxidized biochars: Implications for the biochar aging process. Journal of Agricultural and Food Chemistry, 62(2), 373–380.

    Article  CAS  PubMed  Google Scholar 

  • Rajapaksha, A. U., Chen, S. S., Tsang, D. C., Zhang, M., Vithanage, M., Mandal, S., Gao, B., Bolan, N. S., & Ok, Y. S. (2016). Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere, 148, 276–291.

    Article  CAS  PubMed  Google Scholar 

  • Rizwan, M., Ali, S., Abbas, T., Zia-ur-Rehman, M., Hannan, F., Keller, C., Al-Wabel, M. I., & Ok, Y. S. (2016). Cadmium minimization in wheat: A critical review. Ecotoxicology and Environmental Safety, 130, 43–53.

    Article  CAS  PubMed  Google Scholar 

  • Scott, H. D. (2000). Soil physics: Agricultural and environmental applications. Iowa State University Press.

    Google Scholar 

  • Siddiqui, M. H., Al-Khaishany, M. Y., Al-Qutami, M. A., Al-Whaibi, M. H., Grover, A., Ali, H. M., Al-Wahibi, M. S., & Bukhari, N. A. (2015). Response of different genotypes of faba bean plant to drought stress. International Journal of Molecular Sciences, 16(5), 10214–10227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, G., Batra, N., Salaria, A., Wani, O. A., & Singh, J. (2021). Groundwater quality assessment in Kapurthala district of central plain zone of Punjab using hydrochemical characteristics. Journal of Soil and Water Conservation, 20(1), 43–51.

    Article  Google Scholar 

  • Sohi, S., Lopez-Capel, E., Krull, E., & Bol, R. (2009). Biochar, climate change and soil: A review to guide future research. CSIRO Land and Water Science Report, 5(09), 17–31.

    Google Scholar 

  • Sohi, S. P., Krull, E., Lopez-Capel, E., & Bol, R. (2010). A review of biochar and its use and function in soil. Advances in Agronomy, 105, 47–82.

    Article  CAS  Google Scholar 

  • Sun, L., Wei, P., Pu, W., Wang, B., Wu, Y., & Tan, T. (2016). The oil recovery enhancement by nitrogen foam in high-temperature and high-salinity environments. Journal of Petroleum Science and Engineering, 147, 485–494.

    Article  CAS  Google Scholar 

  • Uzoma, K., Inoue, M., Andry, H., Zahoor, A., & Nishihara, E. (2011). Influence of biochar application on sandy soil hydraulic properties and nutrient retention. Journal of Food, Agriculture and Environment, 9(3/4 part 2), 1137–1143.

    CAS  Google Scholar 

  • Verheijen, F., Jeffery, S., Bastos, A., Van der Velde, M., & Diafas, I. (2010). Biochar application to soils. A critical scientific review of effects on soil properties, processes, and functions. EUR, 24099, 162.

    Google Scholar 

  • Wang, S. Y., Hipps, L., Gillies, R. R., & Yoon, J. H. (2014). Probable causes of the abnormal ridge accompanying the 2013–2014 California drought: ENSO precursor and anthropogenic warming footprint. Geophysical Research Letters, 41(9), 3220–3226.

    Article  Google Scholar 

  • Wang, R.-Z., Huang, D.-L., Liu, Y.-G., Zhang, C., Lai, C., Zeng, G.-M., Cheng, M., Gong, X.-M., Wan, J., & Luo, H. (2018). Investigating the adsorption behavior and the relative distribution of Cd2+ sorption mechanisms on biochars by different feedstock. Bioresource Technology, 261, 265–271.

    Article  CAS  PubMed  Google Scholar 

  • Wani, O. A. (2016). Mapping of nutrients status in soils of Kishtwar and Ramban districts of J&K using geographic information system (GIS). Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Jammu.

    Google Scholar 

  • Wicke, B., Smeets, E., Dornburg, V., Vashev, B., Gaiser, T., Turkenburg, W., & Faaij, A. (2011). The global technical and economic potential of bioenergy from salt-affected soils. Energy & Environmental Science, 4(8), 2669–2681.

    Article  Google Scholar 

  • Wong, V. N., Dalal, R. C., & Greene, R. S. (2009). Carbon dynamics of sodic and saline soils following gypsum and organic material additions: A laboratory incubation. Applied Soil Ecology, 41(1), 29–40.

    Article  Google Scholar 

  • Wu, W., Yang, M., Feng, Q., McGrouther, K., Wang, H., Lu, H., & Chen, Y. (2012). Chemical characterization of rice straw-derived biochar for soil amendment. Biomass and Bioenergy, 47, 268–276.

    Article  CAS  Google Scholar 

  • Wu, W., Mhaimeed, A. S., Al-Shafie, W. M., Ziadat, F., Dhehibi, B., Nangia, V., & De Pauw, E. (2014). Mapping soil salinity changes using remote sensing in Central Iraq. Geoderma Regional, 2, 21–31.

    Article  Google Scholar 

  • Zhang, L., Xu, C. C., & Champagne, P. (2010). Overview of recent advances in thermo-chemical conversion of biomass. Energy Conversion and Management, 51(5), 969–982.

    Article  CAS  Google Scholar 

  • Zhang, M., Cheng, G., Feng, H., Sun, B., Zhao, Y., Chen, H., Chen, J., Dyck, M., Wang, X., & Zhang, J. (2017). Effects of straw and biochar amendments on aggregate stability, soil organic carbon, and enzyme activities in the Loess Plateau, China. Environmental Science and Pollution Research, 24(11), 10108–10120.

    Article  CAS  PubMed  Google Scholar 

  • Zou, L., Morris, G., & Qi, D. (2008). Using activated carbon electrode in electrosorptive deionisation of brackish water. Desalination, 225(1–3), 329–340.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wani, O.A. et al. (2022). Biochar: A New Emerging Tool to Mitigate Abiotic Stresses and Its Effect on Soil Properties. In: Bahar, F.A., Anwar Bhat, M., Mahdi, S.S. (eds) Secondary Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-031-09218-3_9

Download citation

Publish with us

Policies and ethics