Skip to main content

Brain Tumor Segmentation Using UNet-Context Encoding Network

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 12962))

Included in the following conference series:

Abstract

Glioblastoma is an aggressive type of cancer that can develop in the brain or spinal cord. Magnetic Resonance Imaging (MRI) is key to diagnosing and tracking brain tumors in clinical settings. Brain tumor segmentation in MRI is required for disease diagnosis, surgical planning, and prognosis. As these tumors are heterogeneous in shape and appearance, their segmentation becomes a challenging task. The performance of automated medical image segmentation has considerably improved because of recent advances in deep learning. Introducing context encoding with deep CNN models has shown promise for semantic segmentation of brain tumors. In this work, we use a 3D UNet-Context Encoding (UNCE) deep learning network for improved brain tumor segmentation. Further, we introduce epistemic and aleatoric Uncertainty Quantification (UQ) using Monte Carlo Dropout (MCDO) and Test Time Augmentation (TTA) with the UNCE deep learning model to ascertain confidence in tumor segmentation performance. We build our model using the training MRI image sets of RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge 2021. We evaluate the model performance using the validation and test images from the BraTS challenge dataset. Online evaluation of validation data shows dice score coefficients (DSC) of 0.7787, 0.8499, and 0.9159 for enhancing tumor (ET), tumor core (TC), and whole tumor (WT), respectively. The dice score coefficients of the test datasets are 0.6684 for ET, 0.7056 for TC, and 0.7551 for WT, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation and Radiogenomic Classification, arXiv:2107.02314 (2021)

  2. Ostrom, Q.T., Gittleman, H., Truitt, G., Boscia, A., Kruchko, C., Barnholtz-Sloan, J.S.: CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neurooncology, 20(suppl_4), iv1–iv86 (2018)

    Google Scholar 

  3. Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35(5), 1240–1251 (2016)

    Article  Google Scholar 

  4. Pei, L., Vidyaratne, L., Monibor Rahman, M., Shboul, Z.A., Iftekharuddin, K.M.: Multimodal brain tumor segmentation and survival prediction using hybrid machine learning. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11993, pp. 73–81. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46643-5_7

    Chapter  Google Scholar 

  5. Pei, L., et al.: Deep learning with context encoding for semantic brain tumor segmentation and patient survival prediction. Proceedings Volume 11314, Medical Imaging 2020. Computer-Aided Diagnosis, 113140H (2020). https://doi.org/10.1117/12.2550693

  6. Mustaqeem, A., Javed, A., Fatima, T.: An efficient brain tumor detection algorithm using watershed & thresholding-based segmentation. Int. J. Image Graph. Signal Process. 4(10), 34 (2012)

    Article  Google Scholar 

  7. Pei, L., Vidyaratne, L., Hsu, W.W., Rahman, M.M., Iftekharuddin, K.M.: Brain tumor classification using 3D convolutional neural network. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, pp. 335–342, May 2020

    Google Scholar 

  8. Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 8(3), 275–283 (2004)

    Article  Google Scholar 

  9. Ho, S., Bullitt, E., Gerig, G.: Level-set evolution with region competition: automatic 3-D segmentation of brain tumors. In: null, p. 10532. Citeseer (2002)

    Google Scholar 

  10. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: International MICCAI Brainlesion Workshop, pp. 311–320. Springer (2018)

    Google Scholar 

  11. Pei, L., Vidyaratne, L., Rahman, M.M., et al.: Context aware deep learning for brain tumor segmentation, subtype classification, and survival prediction using radiology images. Sci. Rep. 10, 19726 (2020). https://doi.org/10.1038/s41598-020-74419-9

    Article  Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014)

  13. Zhang, H., et al.: Context encoding for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7151–7160 (2018)

    Google Scholar 

  14. Wang, G., Li, W., Aertsen, M., Deprest, J., Ourselin, S´., Vercauteren, T.: Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks. Neurocomputing, 338, 34–45 (2019)

    Google Scholar 

  15. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  16. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data 4, 170117 (2017). https://doi.org/10.1038/sdata.2017.117

    Article  Google Scholar 

  17. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative Scans of the TCGA-GBM collection. The Cancer Imaging Archive (2017). https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

  18. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. The Cancer Imaging Archive (2017). https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

  19. Liu, D., et al.: Imaging-genomics in glioblastoma: combining molecular and imaging signatures. Front. Oncol. 11, 2666 (2021). https://www.frontiersin.org/article/10.3389/fonc.2021.699265

  20. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) MICCAI 2015. LNIP, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  22. Gal, Y., et al.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA (2016)

    Google Scholar 

  23. Combalia, M., Hueto, F., Puig, S., Malvehy, J., Vilaplana, V.: Uncertainty estimation in deep neural networks for dermoscopic image classification. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 3211-3220 (2020). https://doi.org/10.1109/CVPRW50498.2020.00380

Download references

Acknowledgements

This work was partially funded through NIH/NIBIB grant under award number R01EB020683. This research was supported by the Research Computing clusters at Old Dominion University, Norfolk, VA under National Science Foundation Grant No. 1828593.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khan M. Iftekharuddin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rahman, M.M., Sadique, M.S., Temtam, A.G., Farzana, W., Vidyaratne, L., Iftekharuddin, K.M. (2022). Brain Tumor Segmentation Using UNet-Context Encoding Network. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12962. Springer, Cham. https://doi.org/10.1007/978-3-031-08999-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08999-2_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08998-5

  • Online ISBN: 978-3-031-08999-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics