Skip to main content

The Hand After Stroke and SCI: Restoration of Function with Technology

  • Chapter
  • First Online:
Neurorehabilitation Technology

Abstract

Neurological injury, such as that resulting from stroke or spinal cord injury, often leads to impairment of the hand. As the hand is critical to performance of so many functional activities, diminished sensorimotor control of the distal upper extremity can profoundly impact quality of life. This is readily apparent in many stroke survivors and individuals with spinal cord injury. Technological advances have afforded promise that equipment could be developed to facilitate restoration of function. The last 30 years have seen exponential growth in robotic and mechatronic devices targeting impairment arising from neurological injury. Earlier efforts focused largely on external devices such as robotic arms that could either be used to perform tasks for the user or to facilitate movement practice. This technology was often intended to be purely assistive, helping the user to perform a specific task without addressing the underlying pathophysiology, or purely therapeutic, creating forces or motions that would help the user to regain sensorimotor control of their own limb through practice but not helping with performance of a functional task. Recent improvements in materials and actuators have spurred the development of devices that can be worn on the body. These wearable devices afford the possibility of seamlessly shifting between roles as a therapeutic or assistive device depending on the needs of the user, but potentially introduce disadvantages in terms of added mass and bulk. The optimal device remains dependent upon the needs and preferences of the specific user. For an individual with complete spinal cord injury, a robotic arm connected to their wheelchair may provide the best rehabilitation, while for a stroke survivor with good use of the proximal arm, a wearable hand exoskeleton may give the greatest benefit. This chapter describes hand physiology and pathophysiology and wearable and non-wearable robotic devices that have been developed to improve function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dunsworth H. Origin of the genus Homo. Evo Edu Outreach. 2010;3:353–66.

    Google Scholar 

  2. Napier JR. Studies of the hands of living primates. Proc Zool Soc Lond. 1960;134:647–57.

    Google Scholar 

  3. Young RW. Evolution of the human hand: the role of throwing and clubbing. J Anat. 2003;202(1):165–74.

    PubMed  PubMed Central  Google Scholar 

  4. Marzke MW, Marzke RF. Evolution of the human hand: approaches to acquiring, analysing and interpreting the anatomical evidence. J Anat. 2000;197(Pt 1):121–40.

    PubMed  PubMed Central  Google Scholar 

  5. Buffi JH, Crisco JJ, Murray WM. A method for defining carpometacarpal joint kinematics from three-dimensional rotations of the metacarpal bones captured in vivo using computed tomography. J Biomech. 2014;46(12):2104–8.

    Google Scholar 

  6. Brand PW, Hollister AM. Clinical mechanics of the hand. 3rd ed. St. Louis, MO: Mosby; 1999. p. 369.

    Google Scholar 

  7. Valero-Cuevas FJ, Zajac FE, Burgar CG. Large index-fingertip forces are produced by subject-independent patterns of muscle excitation. J Biomech. 1998;31(8):693–703.

    CAS  PubMed  Google Scholar 

  8. Penfield W, Rasmussen, T. The cerebral cortex of man: a clinical study of localization of function. New York, NY: The Macmillan Company; 1950. p. 248.

    Google Scholar 

  9. Rathelot JA, Strick PL. Subdivisions of primary motor cortex based on cortico-motoneuronal cells. Proc Natl Acad Sci USA. 2009;106(3):918–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Darling WG, Cole KJ, Miller GF. Coordination of index finger movements. J Biomech. 1994;27(4):479–91.

    CAS  PubMed  Google Scholar 

  11. Keen DA, Fuglevand AJ. Common input to motor neurons innervating the same and different compartments of the human extensor digitorum muscle. J Neurophysiol. 2004;91(1):57–62.

    PubMed  Google Scholar 

  12. Klaes C, Kellis S, Aflalo T, Lee B, Pejsa K, Shanfield K, et al. Hand shape representations in the human posterior parietal cortex. J Neurosci. 2015;35(46):15466–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Schaffelhofer S, Agudelo-Toro A, Scherberger H. Decoding a wide range of hand configurations from macaque motor, premotor, and parietal cortices. J Neurosci. 2015;35(3):1068–81.

    Google Scholar 

  14. Association AM. Guides to the evaluation of permanent impairment. Chicago: American Medical Association; 1990.

    Google Scholar 

  15. Hanson RW, Franklin MR. Sexual loss in relation to other functional losses for spinal cord injured males. Arch Phys Med Rehabil. 1976;57(6):291–3.

    CAS  PubMed  Google Scholar 

  16. Snoek GJ, MJ IJ, Hermens HJ, Maxwell D, Biering-Sorensen F. Survey of the needs of patients with spinal cord injury: impact and priority for improvement in hand function in tetraplegics. Spinal Cord. 2004;42(9):526–32.

    Google Scholar 

  17. Tyson SF, Chillala J, Hanley M, Selley AB, Tallis RC. Distribution of weakness in the upper and lower limbs post-stroke. Disabil Rehabil. 2006;28(11):715–9.

    PubMed  Google Scholar 

  18. Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, et al. Heart disease and stroke statistics-2021 update: a report from the American heart association. Circulation. 2021;143(8):e254–743.

    PubMed  Google Scholar 

  19. Collaborators GLRoS. Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016. N Engl J Med. 2018;379(25):2429–37.

    Google Scholar 

  20. Roth EJ, Lovell L. Employment after stroke: report of a state of the science symposium. Top Stroke Rehabil. 21 Suppl 1:S75–86.

    Google Scholar 

  21. Kissela BM, Khoury JC, Alwell K, Moomaw CJ, Woo D, Adeoye O, et al. Age at stroke: temporal trends in stroke incidence in a large, biracial population. Neurology. 2012;79(17):1781–7.

    PubMed  PubMed Central  Google Scholar 

  22. George MG, Tong X, Kuklina EV, Labarthe DR. Trends in stroke hospitalizations and associated risk factors among children and young adults, 1995–2008. Ann Neurol. 2011;70(5):713–21.

    CAS  PubMed  Google Scholar 

  23. Girotra T, Lekoubou A, Bishu KG, Ovbiagele B. A contemporary and comprehensive analysis of the costs of stroke in the United States. J Neurol Sci. 2020;410: 116643.

    PubMed  Google Scholar 

  24. Kelly-Hayes M, Beiser A, Kase CS, Scaramucci A, D’Agostino RB, Wolf PA. The influence of gender and age on disability following ischemic stroke: the Framingham study. J Stroke Cerebrovasc Dis. 2003;12(3):119–26.

    PubMed  Google Scholar 

  25. Trombly CA. Stroke. In: Trombly CA, editor. Occupational therapy for physical dysfunction. Baltimore: Williams and Wilkins; 1989. p. 454–71.

    Google Scholar 

  26. Lance JW. Symposium synopsis. In: Feldman RG, Young RR, Koella WP, editors. Spasticity: disordered motor control. Chicago: Year Book Medical Publishers; 1980. p. 485–95.

    Google Scholar 

  27. Towles JD, Kamper DG, Rymer WZ. Lack of hypertonia in thumb muscles after stroke. J Neurophysiol. 2010.

    Google Scholar 

  28. Dietz V, Sinkjaer T. Spastic movement disorder: impaired reflex function and altered muscle mechanics. Lancet Neurol. 2007;6(8):725–33.

    PubMed  Google Scholar 

  29. Mottram CJ, Suresh NL, Heckman CJ, Gorassini MA, Rymer WZ. Origins of abnormal excitability in biceps brachii motoneurons of spastic-paretic stroke survivors. J Neurophysiol. 2009;102(4):2026–38.

    PubMed  PubMed Central  Google Scholar 

  30. Kamper DG, Schmit BS, Rymer WZ. Effect of muscle biomechanics on the quantification of spasticity. Ann Biomed Eng. 2001;29:1122–34.

    CAS  PubMed  Google Scholar 

  31. Barry AJ, Kamper DG, Stoykov ME, Triandafilou K, Roth E. Characteristics of the severely impaired hand in survivors of stroke with chronic impairments. Top Stroke Rehabil. 2021:1–11.

    Google Scholar 

  32. Seo NJ, Rymer WZ, Kamper DG. Delays in grip initiation and termination in persons with stroke: effects of arm support and active muscle stretch exercise. J Neurophysiol. 2009;101(6):3108–15.

    PubMed  Google Scholar 

  33. Cruz EG, Waldinger HC, Kamper DG. Kinetic and kinematic workspaces of the index finger following stroke. Brain. 2005;128(Pt 5):1112–21.

    CAS  PubMed  Google Scholar 

  34. Hoffmann G, Conrad MO, Qiu D, Kamper DG. Contributions of voluntary activation deficits to hand weakness after stroke. Top Stroke Rehabil. 2016;23(6):384–92.

    PubMed  Google Scholar 

  35. Triandafilou KM, Fischer HC, Towles JD, Kamper DG, Rymer WZ. Diminished capacity to modulate motor activation patterns according to task contributes to thumb deficits following stroke. J Neurophysiol. 106(4):1644–51.

    Google Scholar 

  36. Lee SW, Triandafilou K, Lock BA, Kamper DG. Impairment in task-specific modulation of muscle coordination correlates with the severity of hand impairment following stroke. PLoS ONE. 2013;8(7): e68745.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Johansson RS, Vallbo AB. Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J Physiol. 1979;286:283–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Refshauge KM, Kilbreath SL, Gandevia SC. Movement detection at the distal joint of the human thumb and fingers. Exp Brain Res. 1998;122(1):85–92.

    CAS  PubMed  Google Scholar 

  39. Nakamura A, Yamada T, Goto A, Kato T, Ito K, Abe Y, et al. Somatosensory homunculus as drawn by MEG. Neuroimage. 1998;7(4 Pt 1):377–86.

    CAS  PubMed  Google Scholar 

  40. Kessner SS, Schlemm E, Cheng B, Bingel U, Fiehler J, Gerloff C, et al. Somatosensory deficits after ischemic stroke. Stroke. 2019;50(5):1116–23.

    PubMed  Google Scholar 

  41. Sainburg R, Good D, Przybyla A. Bilateral synergy: a framework for post-stroke rehabilitation. J Neurol Transl Neurosci. 2013;1(3).

    Google Scholar 

  42. The National Spinal Cord Injury Statistical Center [Internet]. https://www.nscisc.uab.edu/ (2021).

  43. Lasfargues JE, Custis D, Morrone F, Carswell J, Nguyen T. A model for estimating spinal cord injury prevalence in the United States. Paraplegia. 1995;33(2):62–8.

    CAS  PubMed  Google Scholar 

  44. Center NSCIS. www.nscisc.uab.edu.

  45. Waters RL, Adkins RH, Yakura JS. Definition of complete spinal cord injury. Paraplegia. 1991;29(9):573–81.

    CAS  PubMed  Google Scholar 

  46. Wyndaele M, Wyndaele JJ. Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey? Spinal cord. 2006;44(9):523–9.

    CAS  PubMed  Google Scholar 

  47. Calancie B, Molano MR, Broton JG. Interlimb reflexes and synaptic plasticity become evident months after human spinal cord injury. Brain J Neurol. 2002;125(Pt 5):1150–61.

    Google Scholar 

  48. Dietz V, Curt A. Neurological aspects of spinal-cord repair: promises and challenges. Lancet Neurol. 2006;5(8):688–94.

    PubMed  Google Scholar 

  49. Dietz V, Fouad K. Restoration of sensorimotor functions after spinal cord injury. Brain J Neurol. 2014;137(Pt 3):654–67.

    Google Scholar 

  50. Yang JF, Stein RB, Jhamandas J, Gordon T. Motor unit numbers and contractile properties after spinal cord injury. Ann Neurol. 1990;28(4):496–502.

    CAS  PubMed  Google Scholar 

  51. Thomas CK, Zaidner EY, Calancie B, Broton JG, Bigland-Ritchie BR. Muscle weakness, paralysis, and atrophy after human cervical spinal cord injury. Exp Neurol. 1997;148(2):414–23.

    Google Scholar 

  52. Hager-Ross CK, Klein CS, Thomas CK. Twitch and tetanic properties of human thenar motor units paralyzed by chronic spinal cord injury. J Neurophysiol. 2006;96(1):165–74.

    CAS  PubMed  Google Scholar 

  53. Elbert T, Pantev C, Wienbruch C, Rockstroh B, Taub E. Increased cortical representation of the fingers of the left hand in string players. Science. 1995;270(5234):305–7.

    CAS  PubMed  Google Scholar 

  54. Gaser C, Schlaug G. Brain structures differ between musicians and non-musicians. J Neurosci Off J Soc Neurosci. 2003;23(27):9240–5.

    CAS  Google Scholar 

  55. Altenmuller E, Jabusch HC. Focal dystonia in musicians: phenomenology, pathophysiology and triggering factors. Eur J Neurol. 2010;17(Suppl 1):31–6.

    PubMed  Google Scholar 

  56. Plautz EJ, Milliken GW, Nudo RJ. Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning. Neurobiol Learn Mem. 2000;74(1):27–55.

    CAS  PubMed  Google Scholar 

  57. Jones TA, Chu CJ, Grande LA, Gregory AD. Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. J Neurosci Off J Soc Neurosci. 1999;19(22):10153–63.

    CAS  Google Scholar 

  58. Kleim JA, Jones TA, Schallert T. Motor enrichment and the induction of plasticity before or after brain injury. Neurochem Res. 2003;28(11):1757–69.

    CAS  PubMed  Google Scholar 

  59. Jones TA, Schallert T. Use-dependent growth of pyramidal neurons after neocortical damage. J Neurosci Off J Soc Neurosci. 1994;14(4):2140–52.

    CAS  Google Scholar 

  60. Wolf SL, Winstein CJ, Miller JP, Taub E, Uswatte G, Morris D, et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA. 2006;296(17):2095–104.

    CAS  PubMed  Google Scholar 

  61. Liepert J, Miltner WH, Bauder H, Sommer M, Dettmers C, Taub E, et al. Motor cortex plasticity during constraint-induced movement therapy in stroke patients. Neurosci Lett. 1998;250(1):5–8.

    CAS  PubMed  Google Scholar 

  62. Liepert J, Bauder H, Wolfgang HR, Miltner WH, Taub E, Weiller C. Treatment-induced cortical reorganization after stroke in humans. J Cereb Circ. 2000;31(6):1210–6.

    CAS  Google Scholar 

  63. Topping M. An overview of the development of handy 1, a rehabilitation robot to assist the severely disabled. J Intell Rob Syst. 2002;34(3):253–63.

    Google Scholar 

  64. Song W, Kim J, An K, Lee I, Song W, Lee B, Hwang S, Son M, Lee E, editors. Design of novel feeding robot for Korean food. In: International conference on smart homes and health telematics; 2010; Seoul, Korea.

    Google Scholar 

  65. Gordon EK, Meng X, Bhattacharjee T, Barnes M, Srinivasa SS. Adaptive robot-assisted feeding: an online learning framework for acquiring previously unseen food items. In: IEEE/RSJ international conference on intelligent robots and systems (IROS); 2020. p. 9659–66.

    Google Scholar 

  66. Bien Z, Park K, Chung MJ. Mobile platform-based assistive robot systems. In: Helal A, Mokhtari M, Abdulrazak B, editors. The engineering handbook of smart technology for aging, disability and independence; 2008; Wiley.

    Google Scholar 

  67. Mahoney RM. The raptor wheelchair robot system. In: Mokhtari M, editor. Integration of Assistive Technology in the information age. IOS Press; 2001. p. 135–41.

    Google Scholar 

  68. Driessen BJF, Evers HG, Woerden JA. MANUS—a wheelchair-mounted rehabilitation robot. Proc Inst Mech Eng Part H: J Eng Med. 2001;215(3).

    Google Scholar 

  69. Van der Loos M, Michalowski S, Leifer L. Design of an omnidirectional mobile robot as a manipulation aid for the severely disabled. Foulds R, editor. New York: World Rehabilitation Fund; 1986.

    Google Scholar 

  70. Srinivasa S, Ferguson D, Helfrich C, Berneson D, Collet A, Diankov R, et al. HERB: a home exploring robotic butler. Auton Robot. 2010;28:5–20.

    Google Scholar 

  71. Metzger J-C, Lambercy O, Califfi A, Conti FM, Gassert R. Neurocognitive robot-assisted therapy of hand function. IEEE Trans Haptics. 2013;7:140–9.

    Google Scholar 

  72. Lee SW, Landers KA, Park HS. Development of a biomimetic hand exotendon device (BiomHED) for restoration of functional hand movement post-stroke. IEEE Trans Neural Syst Rehabil Eng. 2014;22(4):886–98.

    PubMed  PubMed Central  Google Scholar 

  73. Kim DH, Park HS. Cable actuated dexterous (CADEX) glove for effective rehabilitation of the hand for patients with neurological diseases. IEEE Int C Int Robot. 2018:2305–10.

    Google Scholar 

  74. Taheri H, Rowe JB, Gardner D, Chan V, Gray K, Bower C, et al. Design and preliminary evaluation of the FINGER rehabilitation robot: controlling challenge and quantifying finger individuation during musical computer game play. J Neuroeng Rehabil. 2014;11:10.

    PubMed  PubMed Central  Google Scholar 

  75. Yun Y, Dancausse S, Esmatloo P, Serrato A, Merring CA, Agarwal P, et al. Maestro: an EMG-driven assistive hand exoskeleton for spinal cord injury patients. IEEE Int Conf Robot Autom (ICRA). 2017.

    Google Scholar 

  76. Connelly L, Jia Y, Toro ML, Stoykov ME, Kenyon RV, Kamper DG. A pneumatic glove and immersive virtual reality environment for hand rehabilitative training after stroke. IEEE Trans Neural Syst Rehabil Eng. 2010;18(5):551–9.

    PubMed  Google Scholar 

  77. Thielbar KO, Lord TJ, Fischer HC, Lazzaro EC, Barth KC, Stoykov ME, et al. Training finger individuation with a mechatronic-virtual reality system leads to improved fine motor control post-stroke. J Neuroeng Rehabil. 2014;11:171.

    PubMed  PubMed Central  Google Scholar 

  78. Brokaw EB, Holley RJ, Lum PS. Hand spring operated movement enhancer (HandSOME) device for hand rehabilitation after stroke. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:5867–70.

    Google Scholar 

  79. Kamper DG, Fischer HC, Cruz EG, Rymer WZ. Weakness is the primary contributor to finger impairment in chronic stroke. Arch Phys Med Rehabil. 2006;87(9):1262–9.

    PubMed  Google Scholar 

  80. Kamper DG, Rymer WZ. Impairment of voluntary control of finger motion following stroke: role of inappropriate muscle coactivation. Muscle Nerve. 2001;24(5):673–81.

    CAS  PubMed  Google Scholar 

  81. Fischer HC, Triandafilou KM, Thielbar KO, Ochoa JM, Lazzaro ED, Pacholski KA, et al. Use of a portable assistive glove to facilitate rehabilitation in stroke survivors with severe hand impairment. IEEE Trans Neural Syst Rehabil Eng. 2016;24(3):344–51.

    PubMed  Google Scholar 

  82. Yurkewich A, Hebert D, Wang RH, Mihailidis A. Hand extension robot orthosis (HERO) glove: development and testing with stroke survivors with severe hand impairment. IEEE Trans Neural Syst Rehabil Eng. 2019;27(5):916–26.

    PubMed  Google Scholar 

  83. Thielbar KO, Triandafilou KM, Fischer HC, O’Toole JM, Corrigan ML, Ochoa JM, et al. Benefits of using a voice and emg-driven actuated glove to support occupational therapy for stroke survivors. IEEE Trans Neural Syst Rehabil Eng. 2017;25(3):297–305.

    PubMed  Google Scholar 

  84. Lee SW, Qiu D, Fischer HC, Conrad MO, Kamper DG. Modulation of finger muscle activation patterns across postures is coordinated across all muscle groups. J Neurophysiol. 2020;124(2):330–41.

    PubMed  PubMed Central  Google Scholar 

  85. Seo NJ, Enders LR, Motawar B, Kosmopoulos ML, Fathi-Firoozabad M. The extent of altered digit force direction correlates with clinical upper extremity impairment in chronic stroke survivors. J Biomech. 2015;48(2):383–7.

    PubMed  Google Scholar 

  86. Lucas L, DiCicco M, Matsuoka Y. An EMG-controlled hand exoskeleton for natural pinching. J Robot Mechatrons. 2004;16:1–7.

    Google Scholar 

  87. Nilsson M, Ingvast J, Wikander J, von Holst H, editors. The soft extra muscle system for improving the grasping capability in neurological rehabilitation. IEEE Eng Med Biol. 2012.

    Google Scholar 

  88. Diftler MA, Bridgwater LB, Rogers JM, Laske EA, Ensley KG, Lee JH, et al., editors. RoboGlove–a grasp assist device for Earth and space. In: 45th international conference on environmental systems; 2015.

    Google Scholar 

  89. In H, Cho KJ, Kim K, Lee B. Jointless structure and under-actuation mechanism for compact hand exoskeleton. IEEE Int Conf Rehabil Robot. 2011;2011:5975394.

    PubMed  Google Scholar 

  90. Biggar S, Yao W. Design and evaluation of a soft and wearable robotic glove for hand rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2016;24(10):1071–80.

    PubMed  Google Scholar 

  91. Kim YJ, Jeong YJ, Jeon HS, Lee DW, Kim JI. Development of a soft robotic glove with high gripping force using force distributing compliant structures. IEEE/RSJ Int Conf Intell Robot Syst (Iros). 2017;2017:3883–90.

    Google Scholar 

  92. Arata J, Ohmoto K, Gassert R, Lambercy O, Fujimoto H, Wada I. A new hand exoskeleton device for rehabilitation using a three-layered sliding spring mechanism. IEEE Int Conf Robot Autom (Icra). 2013;2013:3902–7.

    Google Scholar 

  93. Nycz CJ, Butzer T, Lambercy O, Arata J, Fischer GS, Gassert R. Design and characterization of a lightweight and fully portable remote actuation system for use with a hand exoskeleton. IEEE Robot Autom Lett. 2016;1(2):976–83.

    Google Scholar 

  94. Butzer T, Lambercy O, Arata J, Gassert R. Fully wearable actuated soft exoskeleton for grasping assistance in everyday activities. Soft Robot. 2021;8(2):128–43.

    PubMed  Google Scholar 

  95. Polygerinos P, Wang Z, Galloway KC, Wood RJ, Walsh CJ. Soft robotic glove for combined assistance and at-home rehabilitation. Robot Auton Syst. 2015;73:135–43.

    Google Scholar 

  96. Yap HK, Lim JH, Nasrallah F, Yeow CH. Design and preliminary feasibility study of a soft robotic glove for hand function assistance in stroke survivors. Front Neurosci. 2017;11:547.

    PubMed  PubMed Central  Google Scholar 

  97. Heung KHL, Tong RKY, Lau ATH, Li Z. Robotic glove with soft-elastic composite actuators for assisting activities of daily living. Soft Robot. 2019;6(2):289–304.

    PubMed  Google Scholar 

  98. Dunaway S, Dezsi DB, Perkins J, Tran D, Naft J. Case report on the use of a custom myoelectric elbow-wrist-hand orthosis for the remediation of upper extremity paresis and loss of function in chronic stroke. Mil Med. 2017;182(7):e1963–8.

    PubMed  Google Scholar 

  99. Gasser BW, Martinez A, Sasso-Lance E, Kandilakis C, Durrough CM, Goldfarb M. preliminary assessment of a hand and arm exoskeleton for enabling bimanual tasks for individuals with hemiparesis. IEEE Trans Neural Syst Rehabil Eng. 2020;28(10):2214–23.

    Google Scholar 

  100. Toochinda S, Wannasuphoprasit W, editors. Design and development of an assistive hand device for enhancing compatibility and comfortability. In: 2nd international conference on engineering innovation (ICEI); 2018; IEEE.

    Google Scholar 

  101. Mohammadi A, Lavranos J, Choong P, Oetomo D. Flexo-glove: a 3D printed soft exoskeleton robotic glove for impaired hand rehabilitation and assistance. Conf Proc IEEE Eng Med Biol Soc. 2018;2018:2120–3.

    Google Scholar 

  102. Kang BB, Choi H, Lee H, Cho KJ. Exo-glove poly II: a polymer-based soft wearable robot for the hand with a tendon-driven actuation system. Soft Robot. 2019;6(2):214–27.

    PubMed  Google Scholar 

  103. Jian EK, Gouwanda D, Kheng TK, editors. Wearable hand exoskeleton for activities of daily living. In: IEEE-EMBS conference on biomedical engineering and sciences (IECBES); 2018; IEEE.

    Google Scholar 

  104. In H, Kang BB, Sin M, Cho K-J. Exo-Glove: a wearable robot for the hand with a soft tendon routing system. IEEE Robot Autom Mag. 2015;22(1):97–105.

    Google Scholar 

  105. Rose CG, O’Malley MK. Hybrid rigid-soft hand exoskeleton to assist functional dexterity. IEEE Robot Autom Lett. 2019;4(1):73–80.

    Google Scholar 

  106. Rose CG, O’Malley MK. Design of an assistive, glove-based exoskeleton. Int Symp Wearable Robot Rehabil (Werob). 2017;2017:3–4.

    Google Scholar 

  107. Xiloyannis M, Cappello L, Binh KD, Antuvan CW, Masia L. Preliminary design and control of a soft exosuit for assisting elbow movements and hand grasping in activities of daily living. J Rehabil Assist Technol Eng. 2017;4:2055668316680315.

    PubMed  PubMed Central  Google Scholar 

  108. Wang XF, Tran P, Callahan SM, Wolf SL, Desai JP. Towards the development of a voice-controlled exoskeleton system for restoring hand function. In: International symposium on medical robotics (Ismr). 2019.

    Google Scholar 

  109. Randazzo L, Iturrate I, Perdikis S, Millan JdR. Mano: a wearable hand exoskeleton for activities of daily living and neurorehabilitation. IEEE Robot Autom Lett. 2018;3(1):500–7.

    Google Scholar 

  110. Ghassemi M, Kamper D, editors. A hand exoskeleton for stroke survivors’ activities of daily life. In: 43rd annual international conference of the IEEE engineering in medicine and biology society (EMBC); 2021; IEEE.

    Google Scholar 

  111. Hu XL, Tong KY, Wei XJ, Rong W, Susanto EA, Ho SK. The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot. J Electromyogr Kinesiol. 2013;23(5):1065–74.

    CAS  PubMed  Google Scholar 

  112. Dai C, Cao Y, Hu X. Prediction of individual finger forces based on decoded motoneuron activities. Ann Biomed Eng. 2019;47(6):1357–68.

    PubMed  Google Scholar 

  113. Pfurtscheller G, Guger C, Muller G, Krausz G, Neuper C. Brain oscillations control hand orthosis in a tetraplegic. Neurosci Lett. 2000;292(3):211–4.

    CAS  PubMed  Google Scholar 

  114. Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 485(7398):372–5.

    Google Scholar 

  115. Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, et al. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet (London, England). 381(9866):557–64.

    Google Scholar 

  116. Tan DW, Schiefer MA, Keith MW, Anderson JR, Tyler J, Tyler DJ. A neural interface provides long-term stable natural touch perception. Sci Transl Med. 6(257):257ra138.

    Google Scholar 

  117. Tabot GA, Dammann JF, Berg JA, Tenore FV, Boback JL, Vogelstein RJ, et al. Restoring the sense of touch with a prosthetic hand through a brain interface. Proc Natl Acad Sci USA. 110(45):18279–84.

    Google Scholar 

  118. Miller LC, Dewald JP. Involuntary paretic wrist/finger flexion forces and EMG increase with shoulder abduction load in individuals with chronic stroke. Clin Neurophysiol. 2012;123(6):1216–25.

    PubMed  PubMed Central  Google Scholar 

  119. Kline TL, Schmit BD, Kamper DG. Exaggerated interlimb neural coupling following stroke. Brain. 2007;130(Pt 1):159–69.

    PubMed  Google Scholar 

  120. Correia C, Nuckols K, Wagner D, Zhou YM, Clarke M, Orzel D, et al. Improving grasp function after spinal cord injury with a soft robotic glove. IEEE Trans Neural Syst Rehabil Eng. 2020;28(6):1407–15.

    PubMed  Google Scholar 

  121. Yurkewich A, Kozak IJ, Hebert D, Wang RH, Mihailidis A. Hand extension robot orthosis (HERO) grip glove: enabling independence amongst persons with severe hand impairments after stroke. J Neuroeng Rehabil. 2020;17(1):33.

    PubMed  PubMed Central  Google Scholar 

  122. Radder B, Prange-Lasonder G, Kottink AIR, Melendez-Calderon A, Buurke JH, Rietman JS. Feasibility of a wearable soft-robotic glove to support impaired hand function in stroke patients. J Rehabil Med. 2018;50(7):598–606.

    PubMed  Google Scholar 

  123. Van Ommeren A, Radder B, Buurke JH, Kottink AI, Holmberg J, Sletta K, et al., editors. The effect of prolonged use of a wearable soft-robotic glove post stroke-a proof-of-principle. In: 7th IEEE international conference on biomedical robotics and biomechatronics (Biorob); 2018; IEEE.

    Google Scholar 

  124. Realmuto J, Sanger T. A robotic forearm orthosis using soft fabric-based helical actuators. In: 2nd IEEE international conference on soft robotics (RoboSoft); 2019. p. 591–6.

    Google Scholar 

  125. Park SH, Yi J, Kim D, Lee Y, Koo HS, Park YL. A lightweight, soft wearable sleeve for rehabilitation of forearm pronation and supination. In: 2nd IEEE international conference on soft robotics (Robosoft 2019); 2019. p. 636–41.

    Google Scholar 

  126. Lessard S, Pansodtee P, Robbins A, Baltaxe-Admony LB, Trombadore JM, Teodorescu M, et al. CRUX: a compliant robotic upper-extremity exosuit for lightweight, portable, multi-joint muscular augmentation. IEEE Int Conf Rehabil Robot. 2017;2017:1633–8.

    PubMed  Google Scholar 

  127. Li N, Yang T, Yu P, Zhao L, Chang JL, Xi N, et al. Force point transfer method to solve the structure of soft exoskeleton robot deformation due to the driving force. In: Proceedings of 2018 IEEE international conference on real-time computing and robotics (IEEE Rcar). 2018:236–41.

    Google Scholar 

  128. Ismail R, Ariyanto M, Perkasa IA, Adirianto R, Putri FT, Glowacz A, et al. Soft elbow exoskeleton for upper limb assistance incorporating dual motor-tendon actuator. Electronics. 2019;8(10).

    Google Scholar 

  129. Shiota K, Kokubu S, Tarvainen TVJ, Sekine M, Kita K, Huang SY, et al. Enhanced Kapandji test evaluation of a soft robotic thumb rehabilitation device by developing a fiber-reinforced elastomer-actuator based 5-digit assist system. Robot Auton Syst. 2019;111:20–30.

    Google Scholar 

  130. Rowe JB, Chan V, Ingemanson ML, Cramer SC, Wolbrecht ET, Reinkensmeyer DJ. Robotic assistance for training finger movement using a hebbian model: a randomized controlled trial. Neurorehabil Neural Repair. 2017;31(8):769–80.

    PubMed  PubMed Central  Google Scholar 

  131. Nijenhuis SM, Prange-Lasonder GB, Stienen AH, Rietman JS, Buurke JH. Effects of training with a passive hand orthosis and games at home in chronic stroke: a pilot randomised controlled trial. Clin Rehabil. 2017;31(2):207–16.

    PubMed  Google Scholar 

  132. Ranzani R, Lambercy O, Metzger JC, Califfi A, Regazzi S, Dinacci D, et al. Neurocognitive robot-assisted rehabilitation of hand function: a randomized control trial on motor recovery in subacute stroke. J Neuroeng Rehabil. 2020;17(1):115.

    PubMed  PubMed Central  Google Scholar 

  133. Aprile I, Germanotta M, Cruciani A, Loreti S, Pecchioli C, Cecchi F, et al. Upper limb robotic rehabilitation after stroke: a multicenter, randomized clinical trial. J Neurol Phys Ther. 2020;44(1):3–14.

    PubMed  Google Scholar 

  134. Jung JH, Lee HJ, Cho DY, Lim JE, Lee BS, Kwon SH, et al. Effects of combined upper limb robotic therapy in patients with tetraplegic spinal cord injury. Ann Rehabil Med. 2019;43(4):445–57.

    PubMed  PubMed Central  Google Scholar 

  135. Calabro RS, Accorinti M, Porcari B, Carioti L, Ciatto L, Billeri L, et al. Does hand robotic rehabilitation improve motor function by rebalancing interhemispheric connectivity after chronic stroke? Encouraging data from a randomised-clinical-trial. Clin Neurophysiol. 2019;130(5):767–80.

    PubMed  Google Scholar 

  136. Huang Y, Nam C, Li W, Rong W, Xie Y, Liu Y, et al. A comparison of the rehabilitation effectiveness of neuromuscular electrical stimulation robotic hand training and pure robotic hand training after stroke: a randomized controlled trial. Biomed Signal Process Control. 2020;56.

    Google Scholar 

  137. Qian Q, Nam C, Guo Z, Huang Y, Hu X, Ng SC, et al. Distal versus proximal—an investigation on different supportive strategies by robots for upper limb rehabilitation after stroke: a randomized controlled trial. J Neuroeng Rehabil. 2019;16(1):64.

    PubMed  PubMed Central  Google Scholar 

  138. Jain NB, Ayers GD, Peterson EN, Harris MB, Morse L, O’Connor KC, et al. Traumatic spinal cord injury in the United States, 1993–2012. JAMA. 2015;313(22):2236–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Maldonado AA, Kircher MF, Spinner RJ, Bishop AT, Shin AY. The role of elective amputation in patients with traumatic brachial plexus injury. J Plast Reconstr Aesthet Surg. 2016;69(3):311–7.

    PubMed  Google Scholar 

  140. Barry AJ, Triandafilou KM, Stoykov ME, Bansal N, Roth EJ, Kamper DG. Survivors of chronic stroke experience continued impairment of dexterity but not strength in the nonparetic upper limb. Arch Phys Med Rehabil. 2020;101(7):1170–5.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek G. Kamper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghassemi, M., Kamper, D.G. (2022). The Hand After Stroke and SCI: Restoration of Function with Technology. In: Reinkensmeyer, D.J., Marchal-Crespo, L., Dietz, V. (eds) Neurorehabilitation Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-08995-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08995-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08994-7

  • Online ISBN: 978-3-031-08995-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics