Skip to main content

Three-Dimensional Multi-Degree-of-Freedom Arm Therapy Robot (ARMin)

  • Chapter
  • First Online:
Neurorehabilitation Technology

Abstract

Rehabilitation robots have become an important tool to complement rehabilitation training in patients with neurological disorders such as stroke and spinal cord injury. Arm rehabilitation robots can create a motivational, activity-based environment supporting an intensive rehabilitation training with frequent and numerous repetitions. Therefore, robots have the potential to improve the rehabilitation process in patients with lesions of the central nervous system. In this chapter, the three-dimensional, multi-degree-of-freedom ARMin arm robot, and the related ChARMin and Armeo Power robots, are presented. The devices have an exoskeleton structure that enables the training of activities of daily living. Patient-responsive control strategies assist the patient only as much as needed and stimulate patient activity. This chapter covers the mechanical setup, the therapy modes, and the clinical evaluation of the exoskeleton robots. It concludes with an outlook on ongoing developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brainin M, Bornstein N, Boysen G, Demarin V. Acute neurological stroke care in Europe: results of the European stroke care inventory. Eur J Neurol. 2000;7:5–10.

    CAS  PubMed  Google Scholar 

  2. Thorvaldsen P, Asplund K, Kuulasmaa K, Rajakangas AM, Schroll M. Stroke incidence, case fatality, and mortality in the WHO MONICA project. World health organization monitoring trends and determinants in cardiovascular disease. Stroke. 1995;26(3):361–7.

    Google Scholar 

  3. Rosamond W, Flegal K, Friday G, et al. Heart disease and stroke statistics update. A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2007;115:69–171.

    Google Scholar 

  4. Maeurer HC, Diener HC. Der Schlaganfall. Stuttgart: Georg Thieme Verlag; 1996.

    Google Scholar 

  5. Rossini PM, Calautti C, Pauri F, Baron JC. Post-stroke plastic reorganisation in the adult brain. Lancet Neurol. 2003;2:493–502.

    PubMed  Google Scholar 

  6. Nakayama H, Jrgensen HS, Raaschou HO, Olsen TS. Recovery of upper extremity function in stroke patients: the Copenhagen stroke study. Arch Phys Med Rehabil. 1994;75:394–8.

    CAS  PubMed  Google Scholar 

  7. Barreca S, Wolf SL, Fasoli S, Bohannon R. Treatment interventions for the paretic upper limb of stroke survivors: a critical review. Neurorehabil Neural Repair. 2003;17(4):220–6.

    PubMed  Google Scholar 

  8. Platz T. Evidence-based arm rehabilitation—a systematic review of the literature. Nervenarzt. 2003;74(10):841–9.

    CAS  PubMed  Google Scholar 

  9. Dobkin BH. Strategies for stroke rehabilitation. Lancet Neurol. 2004;3(9):528–36.

    PubMed  PubMed Central  Google Scholar 

  10. Ottenbacher KJ, Jannell S. The results of clinical trials in stroke rehabilitation research. Arch Neurol. 1993;50:37–44.

    CAS  PubMed  Google Scholar 

  11. Kwakkel G, Wagenaar RC, Koelman TW, Lankhorst GJ, Koetsier JC. Effects of intensity of rehabilitation after stroke. A research synthesis. Stroke. 1997;28(8):1550–6.

    CAS  PubMed  Google Scholar 

  12. Nelles G. Cortical reorganization-effects of intensive therapy. Arch Phys Med Rehabil. 2004;22:239–44.

    Google Scholar 

  13. Sunderland A, Tinson DJ, Bradley EL, Fletcher D, Langton Hewer R, Wade DT. Enhanced physical therapy improves recovery of arm function after stroke. A randomised controlled trial. J Neurol Neurosurg Psychiatry. 1992;55(7):530–5.

    Google Scholar 

  14. Kwakkel G, Kollen BJ, Wagenaar RC. Long term effects of intensity of upper and lower limb training after stroke: a randomised trial. J Neurol Neurosurg Psychiatry. 2002;72:473–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Butefisch C, Hummelsheim H, Denzler P, Mauritz KH. Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand. J Neurol Sci. 1995;130:59–68.

    CAS  PubMed  Google Scholar 

  16. Prange GB, Jannink MJA, Groothuis-Oudshoorn CGM, Hermens HJ, MJ Ijzerman. Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev. 2006;43:171–84.

    Google Scholar 

  17. Riener R, Nef T, Colombo G. Robot-aided neurorehabilitation for the upper extremities. Med Biol Eng Comput. 2005;43:2–10.

    CAS  PubMed  Google Scholar 

  18. Kwakkel G, Kollen BJ, Krebs HI. Effects of robotassisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair. 2008;22(2):111–21.

    PubMed  Google Scholar 

  19. Singh H, Unger J, Zariffa J, Pakosh M, Jaglal S, Craven BC, Musselman KE. Robot-assisted upper extremity rehabilitation for cervical spinal cord injuries: a systematic scoping review. Disabil Rehabil Assist Technol. 2018;13(7):704–15. https://doi.org/10.1080/17483107.2018.1425747 Epub 2018 Jan 15 PMID: 29334467.

    Article  PubMed  Google Scholar 

  20. Monardo G, Pavese C, Giorgi I, Godi M, Colombo R. Evaluation of patient motivation and satisfaction during technology-assisted rehabilitation: an experiential review. Games Health J. 2021;10(1):13–27. https://doi.org/10.1089/g4h.2020.0024 Epub 2020 Jul 2 PMID: 32614618.

    Article  PubMed  Google Scholar 

  21. Palermo E, Hayes DR, Russo EF, Calabrò RS, Pacilli A, Filoni S. Translational effects of robot-mediated therapy in subacute stroke patients: an experimental evaluation of upper limb motor recovery. PeerJ. 2018;4(6): e5544. https://doi.org/10.7717/peerj.5544.PMID:30202655;PMCID:PMC6128258.

    Article  Google Scholar 

  22. Krebs HI, Ferraro M, Buerger SP, et al. Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus. J Neuroeng Rehabil. 2004;1:5–9.

    PubMed  PubMed Central  Google Scholar 

  23. Lum PS, Burgar CG, Shor PC, Majmundar M, Van der Loos M. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil. 2002;83(7):952–9.

    PubMed  Google Scholar 

  24. Hesse S, Werner C, Pohl M, Mehrholz J, Puzich U, Krebs HI. Mechanical arm trainer for the treatment of the severely affected arm after a stroke: a single-blinded randomized trial in two centers. Am J Phys Med Rehabil. 2008;87(10):779–88.

    CAS  PubMed  Google Scholar 

  25. Coote S, Murphy B, Harwin W, Stokes E. The effect of the GENTLE/s robot-mediated therapy system on arm function after stroke. Clin Rehabil. 2008;22(5):395–405.

    PubMed  Google Scholar 

  26. Dewald J, Ellis MD, Holubar BG, Sukal T, Acosta AM. The robot application in the rehabilitation of stroke patients. Neurol Rehabil. 2004;4:S7.

    Google Scholar 

  27. Nef T, Guidali M, Riener R. ARMin III—arm therapy exoskeleton with an ergonomic shoulder actuation. Appl Bionics Biomech. 2009;6(2):127–42.

    Google Scholar 

  28. Stienen AHA, Hekman EEG, Van der Helm FCT, et al. Dampace: dynamic force-coordination trainer for the upper extremities. Proc IEEE. 2007;10:13–5.

    Google Scholar 

  29. Sanchez RJ, Liu J, Rao S, et al. Automating arm movement training following severe stroke: functional exercise with quantitative feedback in a gravityreduced environment. IEEE Trans Neural Syst Rehabil Eng. 2006;14:378–89.

    PubMed  Google Scholar 

  30. Roderick S, Liszka M, Carignan C.Design of an arm exoskeleton with scapula motion for shoulder rehabilitation ICAR ‘05. In: Proceedings of the 12th international conference on advanced robotics; 2005. p. 524–31. https://doi.org/10.1109/ICAR.2005.1507459.

  31. Frisoli A, Borelli L, Montagner A, et al. Arm rehabilitation with a robotic exoskeleleton in virtual reality. In: IEEE 10th international conference on rehabilitation robotics, vol. 1. and 2. Noordwijk; 2007. p. 631–42.

    Google Scholar 

  32. Rosen J, Perry JC, Manning N, Burns S, Hannaford B.The human arm kinematics and dynamics during daily activities - toward a 7 DOF upper limb powered exoskeleton ICAR ‘05. In: Proceedings of the 12th international conference on advanced robotics; 2005. p. 532–9. https://doi.org/10.1109/ICAR.2005.1507460.

  33. Zhang LQ, Park FS, Ren YP. Developing an intelligent robotic arm for stroke rehabilitation. In: 2007 IEEE 10th international conference on rehabilitation robotics, vol. 1 and 2. Noordwijk; 2007, p. 984–93.

    Google Scholar 

  34. Nef T, Mihelj M, Riener R. ARMin: a robot for patient-cooperative arm therapy. Med Biol Eng Comput. 2007;45:887–900.

    PubMed  Google Scholar 

  35. Bayona NA, Bitensky J, Salter K, Teasell R. The role of task-specific training in rehabilitation therapies. Top Stroke Rehabil. 2005;12:58–65.

    PubMed  Google Scholar 

  36. Wolf SL, Lecraw DE, Barton LA, Jann BB. Forced use of hemiplegic upper extremity to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Exp Neurol. 1989;104:125–32.

    CAS  PubMed  Google Scholar 

  37. Taub E, Uswatte G, Pidikiti R. Constraint-induced movement therapy: a new family of techniques with broad application to physical rehabilitation—a clinical review. J Rehabil Res Dev. 1999;36:237–51.

    CAS  PubMed  Google Scholar 

  38. Miltner WHR, Bauder H, Sommer M, Dettmers C, Taub E. Effects of constraint-induced movement therapy on patients with chronic motor deficits after stroke. A replication. Stroke. 1999;30:586–92.

    CAS  PubMed  Google Scholar 

  39. Dromerick AW, Edwards DF, Hahn M. Does the application of constraint-induced movement therapy during acute rehabilitation reduce arm impairment after ischemic stroke? Stroke. 2000;31:2984–8.

    CAS  PubMed  Google Scholar 

  40. Lambercy O, Dovat L, Gassert R, Burdet E, Teo CL, Milner T. A haptic knob for rehabilitation of hand function. IEEE Trans Neural Syst Rehabil Eng. 2007;15(3):356–66.

    PubMed  Google Scholar 

  41. Hesse S, Schulte-Tigges G, Konrad M, Bardeleben A, Werner C. Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch Phys Med Rehabil. 2003;84:915–20.

    PubMed  Google Scholar 

  42. Krebs HI, Volpe BT, Williams D, et al. Robot-aided neurorehabilitation: a robot for wrist rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007;15(3):327–35.

    PubMed  PubMed Central  Google Scholar 

  43. Hesse S, Werner C, Pohl M, Rueckriem S, Mehrholz J, Lingnau ML. Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers. Stroke. 2005;36(9):1960–6.

    CAS  PubMed  Google Scholar 

  44. Muellbacher W, Richards C, Ziemann U, et al. Improving hand function in chronic stroke. Arch Neurol. 2002;59(8):1278–82. 42. Krebs HI, Hogan N, Aisen ML, Volpe BT. Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng. 1998;6:75–87.

    Google Scholar 

  45. Ellis MD, Sukal-Moulton TM, Dewald JP. Impairment-based 3-D robotic intervention improves upper extremity work area in chronic stroke: targeting abnormal joint torque coupling with progressive shoulder abduction loading. IEEE Trans Robot. 2009;25(3):549–55.

    PubMed  PubMed Central  Google Scholar 

  46. Krebs HI, Mernoff S, Fasoli SE, Hughes R, Stein J, Hogan N. A comparison of functional and impairment-based robotic training in severe to moderate chronic stroke: a pilot study. NeuroRehabilitation. 2008;23(1):81–7. PMID: 18356591; PMCID: PMC4692808.

    Google Scholar 

  47. Bolliger M, Banz R, Dietz V, Lunenburger L. Standardized voluntary force measurement in a lower extremity rehabilitation robot. J Neuroeng Rehabil. 2008;5:23.

    PubMed  PubMed Central  Google Scholar 

  48. Lunenburger L, Colombo G, Riener R. Biofeedback for robotic gait rehabilitation. J Neuroeng Rehabil. 2007;4:1.

    PubMed  PubMed Central  Google Scholar 

  49. Housman SJ, Scott KM, Reinkensmeyer DJ. A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Neurorehabil Neural Repair. 2009;23(5):505–14.

    PubMed  Google Scholar 

  50. Nef T, Mihelj M, Colombo G, Riener R. ARMin robot for rehabilitation of the upper extremities. In: IEEE international conference on robotics and automation, Orlando; 2006. p. 3152–7.

    Google Scholar 

  51. Mihelj M, Nef T, Riener R. ARMin II—7 DoF rehabilitation robot: mechanics and kinematics. In: Proceedings of the 2007 IEEE international conference on robotics and automation, vol. 1–10, Rome; 2007. p. 4120–5.

    Google Scholar 

  52. Nef T, Lum P. Improving backdrivability in geared rehabilitation robots. Med Biol Eng Comput. 2009;47(4):441–7.

    PubMed  Google Scholar 

  53. Staubli P, Nef T, Klamroth-Marganska V, Riener R. Effects of intensive arm training with the rehabilitation robot ARMin II in chronic stroke patients: four single-cases. J Neuroeng Rehabil. 2009;6:46.

    PubMed  PubMed Central  Google Scholar 

  54. Nef T, Quinter G, Muller R, Riener R. Effects of arm training with the robotic device ARMin I in chronic stroke: three single cases. Neurodegener Dis. 2009;6(5–6):240–51.

    PubMed  Google Scholar 

  55. Nef T, Mihelj M, Kiefer G, Perndl C, Mueller R, Riener R. ARMin—exoskeleton for arm therapy in stroke patients. In: 2007 IEEE 10th international conference on rehabilitation robotics, vol. 1 and 2, Noordwijk; 2007. p. 68–74.

    Google Scholar 

  56. Guidali M, Duschau-Wicke A, Broggi S, Klamroth-Marganska V, Nef T, Riener R. Med Biol Eng Comput. 2011;49(10):1213–23 Epub 2011 Jul28 PMID:21796422.

    PubMed  Google Scholar 

  57. Mihelj M, Nef T, Riener R. A novel paradigm for patient-cooperative control of upper-limb rehabilitation robots. Adv Robot. 2007;21(8):843–67.

    Google Scholar 

  58. Duschau-Wicke A, von Zitzewitz J, Caprez A, Lunenburger L, Riener R. Path control: a method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2010;18(1):38–48.

    PubMed  Google Scholar 

  59. Dewald JP, Beer RF. Abnormal joint torque patterns in the paretic upper limb of subjects with hemiparesis. Muscle Nerve. 2001;24:273–83.

    CAS  PubMed  Google Scholar 

  60. Schmartz AC, Meyer-Heim AD, Muller R, Bolliger M. Measurement of muscle stiffness using robotic assisted gait orthosis in children with cerebral palsy: a proof of concept. Disabil Rehabil Assist Technol. 2011;6(1):29–37.

    PubMed  Google Scholar 

  61. Keller U, Schölch S, Albisser U, Rudhe C, Curt A, Riener R, Klamroth-Marganska V. Robot-assisted arm assessments in spinal cord injured patients: a consideration of concept study. PLoS ONE. 2015;10(5): e0126948. https://doi.org/10.1371/journal.pone.0126948.PMID:25996374;PMCID:PMC4440615.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sakzewski L, Gordon A, Eliasson A-C. The state of the evidence for intensive upper limb therapy approaches for children with unilateral cerebral palsy. J Child Neurol. 2014;29(8):1077–90.

    PubMed  Google Scholar 

  63. Damiano D. Activity, activity, activity: rethinking our physical therapy approach to cerebral palsy. Phys Therap. 2006;86(11):1534–40.

    Google Scholar 

  64. Fasoli S, Fragala-Pinkham M, Hughes R, Hogan N, Krebs H, Stein J. Upper limb robotic therapy for children with hemiplegia. Am J Phys Med Rehabil. 2008;87(11):929.

    PubMed  Google Scholar 

  65. Fluet G, Qiu Q, Kelly DParikh H, Ramirez D, Saleh S, Adamovich S. Interfacing a haptic robotic system with complex virtual environments to treat impaired upper extremity motor function in children with cerebral palsy. Develop Neurorehabil 2010; 13(5):335–45.

    Google Scholar 

  66. Gilliaux M, Renders A, Dispa D, Holvoet D, Sapin J, Dehez B, Detrembleur C, Lejeune TM, Stoquart G. Upper limb robot-assisted therapy in cerebral palsy a single-blind randomized controlled trial. Neurorehabil Neural Repair. 2014;29(2):183–92.

    PubMed  Google Scholar 

  67. http://www.hocoma.com/products/armeo/armeospring-pediatric/.

  68. Keller H, Riener R. Design of the pediatric arm rehabilitation robot ChARMin. In: IEEE international conference on biomedical robotics and biomechatronics (BioRob). IEEE; 2014. p. 530–535

    Google Scholar 

  69. Gassert R, Dietz V. Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective. J Neuroeng Rehabil. 2018;15(1):46. https://doi.org/10.1186/s12984-018-0383-x.PMID:29866106;PMCID:PMC5987585.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Klamroth-Marganska V, Blanco J, Campen K, et al. Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial. Lancet Neurol. 2014;13(2):159–66.

    PubMed  Google Scholar 

  71. Mehrholz J, Thomas S, Kugler J, Pohl M, Elsner B. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. 2020;10(10):CD006185. https://doi.org/10.1002/14651858.CD006185.pub5. PMID: 33091160; PMCID: PMC8189995.

  72. Calabrò RS, Naro A, Russo M, Milardi D, Leo A, Filoni S, Trinchera A, Bramanti P. Is two better than one? Muscle vibration plus robotic rehabilitation to improve upper limb spasticity and function: a pilot randomized controlled trial. PLoS ONE. 2017;12(10): e0185936. https://doi.org/10.1371/journal.pone.0185936.PMID:28973024;PMCID:PMC5626518.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Paci M, Nannetti L, Casavola D, Lombardi B. Differences in motor recovery between upper and lower limbs: does stroke subtype make the difference? Int J Rehabil Res. 2016;39:185.

    PubMed  Google Scholar 

  74. Lo AC, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. New Engl J Med. 2010;362:1772–83.

    CAS  PubMed  Google Scholar 

  75. Hesse S, Gotthard S-T, Konrad M, Bardeleben A, Werner C. Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic. Arch Phys Med Rehab. 2003;84:915–20.

    Google Scholar 

  76. Wolf SL, et al. The HAAPI (home Arm assistance progression initiative) trial. Neurorehabil Neural Repair. 2015;29:958–68.

    PubMed  PubMed Central  Google Scholar 

  77. Burgar C, Lum P, Shor P, der Loos MH. Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience. J Rehabil Res Dev. 2000;37:663–73.

    CAS  PubMed  Google Scholar 

  78. Takahashi K, et al. Efficacy of upper extremity robotic therapy in subacute poststroke hemiplegia. Stroke. 2018;47:1385–8.

    Google Scholar 

  79. Hwang C, Seong J, Son D-S. Individual finger synchronized robot-assisted hand rehabilitation in subacute to chronic stroke: a prospective randomized clinical trial of efficacy. Clin Rehabil. 2011;26:696–704.

    Google Scholar 

  80. Kim J, Lee BS, Lee HJ, Kim HR, Cho DY, Lim JE, Kim JJ, Kim HY, Han ZA. Clinical efficacy of upper limb robotic therapy in people with tetraplegia: a pilot randomized controlled trial. Spinal Cord. 2019;57(1):49–57. https://doi.org/10.1038/s41393-018-0190-z. Epub 2018 Sep 11. Erratum in: Spinal Cord. 2019 Feb 4;: PMID: 30206423.

  81. Metzger J, Lambercy O, Gassert R. Performance comparison of interaction control strategies on a hand rehabilitation robot. In: IEEE international conference on rehabilitation robotics (ICORR); 2015. p. 846–51. https://doi.org/10.1109/ICORR.2015.7281308.

  82. Özen Ö, Penalver-Andres J, Ortega EV, Buetler KA, Marchal-Crespo L.Haptic rendering modulates task performance, physical effort and movement strategy during robot-assisted training. In: 8th IEEE RAS/EMBS international conference for biomedical robotics and biomechatronics (BioRob); 2020. p. 1223–1228. https://doi.org/10.1109/BioRob49111.2020.9224317.

  83. Just F, Özen Ö, Tortora S, Klamroth-Marganska V, Riener R, Rauter G. Human arm weight compensation in rehabilitation robotics: efficacy of three distinct methods. J Neuroeng Rehabil. 2020;17(1):13. https://doi.org/10.1186/s12984-020-0644-3.PMID:32024528;PMCID:PMC7003349.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Özen Ö, Buetler KA, Marchal-Crespo L. Towards functional robotic training: motor learning of dynamic tasks is enhanced by haptic rendering but hampered by arm weight support. J Neuroeng Rehabil. 2022;19(1):19. https://doi.org/10.1186/s12984-022-00993-w PMID: 35152897.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Baur K, Speth F, Nagle A, Riener R, Klamroth-Marganska V. Music meets robotics: a prospective randomized study on motivation during robot aided therapy. J Neuroeng Rehabil. 2018;15(1):79. https://doi.org/10.1186/s12984-018-0413-8.PMID:30115082;PMCID:PMC6097420.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Krakauer JW, Kitago T, Goldsmith J, Ahmad O, Roy P, Stein J, Bishop L, Casey K, Valladares B, Harran MD, Cortés JC, Forrence A, Xu J, DeLuzio S, Held JP, Schwarz A, Steiner L, Widmer M, Jordan K, Ludwig D, Moore M, Barbera M, Vora I, Stockley R, Celnik P, Zeiler S, Branscheidt M, Kwakkel G, Luft AR. Comparing a novel neuroanimation experience to conventional therapy for high-dose intensive upper-limb training in subacute stroke: the SMARTS2 randomized trial. Neurorehabil Neural Repair. 2021;35(5):393–405. https://doi.org/10.1177/15459683211000730 Epub 2021 Mar 20 PMID: 33745372.

    Article  PubMed  Google Scholar 

  87. Baur K, Schättin A, de Bruin ED, Riener R, Duarte JE, Wolf P. Trends in robot-assisted and virtual reality-assisted neuromuscular therapy: a systematic review of health-related multiplayer games. J Neuroeng Rehabil. 2018;15(1):1–19.

    Google Scholar 

  88. Baur K, Wolf P, Klamroth-Marganska V, Bierbauer W, Scholz U, Riener R, Duarte JE. Robot-supported multiplayer rehabilitation: feasibility study of haptically linked patient-spouse training. In: IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE; 2018. p. 4679–84.

    Google Scholar 

  89. Calabrò RS, Russo M, Naro A, Milardi D, Balletta T, Leo A, Filoni S, Bramanti P. Who may benefit from armeo power treatment? a neurophysiological approach to predict neurorehabilitation outcomes. PM R. 2016;8(10):971–8. https://doi.org/10.1016/j.pmrj.2016.02.004 Epub 2016 Feb 20 PMID: 26902866.

    Article  PubMed  Google Scholar 

  90. Buschfort R, et al. Arm studio to intensify the upper limb rehabilitation after stroke: concept, acceptance, utilization and preliminary clinical results. J Rehabil Med. 2010;42:310–4.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all people who contributed to the development and clinical application of ARMin, including Prof. Dr. med. V. Dietz, M. Guidali, A. Brunschweiler, A. Rotta, and A. Kollmar. Furthermore, we want to thank all participating patients and our clinical partners contributing to the multicenter study. The research was and is still funded in part by NCCR Neuro, Swiss National Science Foundation, Hans-Eggenberger Foundation, Bangerter-Rhyner Foundation, and ETH Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Nef .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nef, T., Klamroth-Marganska, V., Keller, U., Riener, R. (2022). Three-Dimensional Multi-Degree-of-Freedom Arm Therapy Robot (ARMin). In: Reinkensmeyer, D.J., Marchal-Crespo, L., Dietz, V. (eds) Neurorehabilitation Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-08995-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08995-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08994-7

  • Online ISBN: 978-3-031-08995-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics