Skip to main content

Telerehabilitation Technology

  • Chapter
  • First Online:
Neurorehabilitation Technology

Abstract

Due to physical and cognitive deficits, it is often difficult and costly for individuals who have suffered a stroke to access on-site neurorehabilitation. Telerehabilitation offers the opportunity to improve the rehabilitation process as it can provide intensive supervised rehabilitation in the home environment. The term telerehabilitation refers to the provision of therapeutic services at a distance, enabled by electronic telecommunication and information technologies. Services are provided through a variety of technical systems with different purposes and capabilities. This chapter provides an overview of technical solutions for providing telerehabilitation services to treat the main consequences of stroke, namely paresis of the upper and lower extremities, and communication difficulties. We describe the communication tools, sensor technologies, virtual reality systems, and robots for service delivery and explore the facilitators and barriers to successful implementation. Evidence is summarized in the context of teleassessment, telemonitoring, and teletherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Appleby E, et al. Effectiveness of telerehabilitation in the management of adults with stroke: a systematic review. PLoS ONE. 2019;14: e0225150.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Brennan DM, Mawson S, Brownsell S. Telerehabilitation: enabling the remote delivery of healthcare, rehabilitation, and self management. Stud Health Technol. 2009;145:231–48.

    Google Scholar 

  3. Richmond T, et al. American telemedicine association’s principles for delivering telerehabilitation services. Int J Telerehabilitation 2017; 9:63–68.

    Google Scholar 

  4. Katz RC. Application of computers to the treatment of US veterans with aphasia. Aphasiology. 2009;23:1116–26.

    Google Scholar 

  5. Vaughn GR. Tel-communicology: health-care delivery system for persons with communicative disorders. ASHA. 1976;18:13–7.

    CAS  PubMed  Google Scholar 

  6. Shinar D, et al. Reliability of the activities of daily living scale and its use in telephone interview. Arch Phys Med Rehab. 1987;68:723–8.

    CAS  Google Scholar 

  7. Mayo NE. Stroke Rehabilitation at Home. Stroke. 2018;47:1685–91.

    Google Scholar 

  8. Danzl MM, Etter NM, Andreatta RD, Kitzman PH. Facilitating neurorehabilitation through principles of engagement. J Allied Heal. 2012;41:35–41.

    Google Scholar 

  9. Isernia S, et al. Efficiency and patient-reported outcome measures from clinic to home: the human empowerment aging and disability program for digital-health rehabilitation. Front Neurol. 2019;10:1206.

    PubMed  PubMed Central  Google Scholar 

  10. Vickery DM, et al. Effect of a Self-care Education Program on Medical Visits. JAMA. 1983;250:2952–6.

    CAS  PubMed  Google Scholar 

  11. Coulter A, Ellins J. Client-focused interventions: a review of the evidence, vol 1. London: Health Foundation; 2006.

    Google Scholar 

  12. Laver KE, et al. Telerehabilitation services for stroke. Cochrane Database Syst Rev. 2020;1:CD010255

    Google Scholar 

  13. Deng H, et al. Complex versus simple ankle movement training in stroke using telerehabilitation: a randomized controlled trial. Phys Ther. 2012;92:197–209.

    PubMed  Google Scholar 

  14. Baur K, Rohrbach N, Hermsdörfer J, Riener R, Klamroth-Marganska V. The “Beam-Me-In Strategy”–remote haptic therapist-patient interaction with two exoskeletons for stroke therapy. J Neuroeng Rehabil. 2019;16:85.

    PubMed  PubMed Central  Google Scholar 

  15. Mutalib SA, et al. Modernising the dynamometer for grip assessment: comparison between gripable and jamar. 2021. https://doi.org/10.21203/rs.3.rs-720982/v1.

  16. Laver KE, et al. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2017. https://doi.org/10.1002/14651858.cd008349.pub4.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Annaswamy TM, et al. Using biometric technology for telehealth and telerehabilitation. Phys Med Rehabil Cli. 2021;32:437–49.

    Google Scholar 

  18. Weiss PL, Kizony R, Feintuch U, Katz N. Textbook of neural repair and rehabilitation 2006;182–197. https://doi.org/10.1017/cbo9780511545078.015.

  19. Rinne P, et al. Democratizing neurorehabilitation: how accessible are low-cost mobile-gaming technologies for self-rehabilitation of arm disability in stroke? PLoS ONE. 2016;11: e0163413.

    PubMed  PubMed Central  Google Scholar 

  20. Klamroth-Marganska V, et al. Does therapy always need touch? A cross-sectional study among Switzerland-based occupational therapists and midwives regarding their experience with health care at a distance during the COVID-19 pandemic in spring 2020. Bmc Health Serv Res. 2021;21:578.

    PubMed  PubMed Central  Google Scholar 

  21. Seifert A. Die Nutzung des Internets durch Personen ab 65 Jahren und ihr subjektives Gefühl der Exklusion. Blätter Der Wohlfahrtspflege. 2021;168:149–51.

    Google Scholar 

  22. Ballmer T. et al. Behandlungen auf Distanz während des Lockdowns. Ergotherapie. 2021:22–27.

    Google Scholar 

  23. Almathami HKY, Win KT, Vlahu-Gjorgievska E. Barriers and facilitators that influence telemedicine-based, real-time, online consultation at patients’ homes: systematic literature review. J Med Internet Res. 2020;22: e16407.

    PubMed  PubMed Central  Google Scholar 

  24. Bahari M, Jafni TI, Miskon S, Ismail W. A review of success/failure factors influencing healthcare personnel for telerehabilitation. In: 2019 6th International conference res innovation information syst icriis; 2019. p. 1–7.

    Google Scholar 

  25. Jafni TI, Bahari M, Ismail W, Radman A. Understanding the implementation of telerehabilitation at pre-implementation stage: a systematic literature review. Procedia Comput Sci. 2017;124:452–60.

    Google Scholar 

  26. Yusof M. Mohd. A case study evaluation of a Critical Care Information System adoption using the socio-technical and fit approach. Int J Med Inform. 2015;84:486–499.

    Google Scholar 

  27. Creagh AP, et al. Smartphone-based remote assessment of upper extremity function for multiple sclerosis using the Draw a Shape Test. Physiol Meas. 2020;41: 054002.

    CAS  PubMed  Google Scholar 

  28. Donkor ES. Stroke in the 21st century: a snapshot of the burden, epidemiology, and quality of life. Stroke Res Treat. 2018;2018:3238165.

    PubMed  PubMed Central  Google Scholar 

  29. Feigin VL, et al. Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet. 2014;383:245–55.

    PubMed  PubMed Central  Google Scholar 

  30. Broeks JG, Lankhorst GJ, Rumping K, Prevo AJH. The long-term outcome of arm function after stroke: results of a follow-up study. Disabil Rehabil. 2009;21:357–64.

    Google Scholar 

  31. Nijland RHM, van Wegen EEH, der Wel BCH, Kwakkel G. Presence of finger extension and shoulder abduction within 72 hours after stroke predicts functional recovery. Stroke. 2010;41:745–50.

    PubMed  Google Scholar 

  32. Kwakkel G, Kollen BJ, van der Grond J, Prevo AJH. Probability of regaining dexterity in the flaccid upper limb. Stroke. 2003;34:2181–6.

    PubMed  Google Scholar 

  33. van Lieshout ECC, van de Port IG, Dijkhuizen RM, Visser-Meily JMA. Does upper limb strength play a prominent role in health-related quality of life in stroke patients discharged from inpatient rehabilitation? Top Stroke Rehabil. 2020;27:1–9.

    Google Scholar 

  34. Ytterberg C, et al. A qualitative study of cognitive behavioural therapy in multiple sclerosis: experiences of psychotherapists. Int J Qual Stud Heal. 2017;12:1325673.

    Google Scholar 

  35. Bernhardt J, et al. Agreed definitions and a shared vision for new standards in stroke recovery research: The Stroke Recovery and Rehabilitation Roundtable taskforce. Int J Stroke. 2017;12:444–50.

    PubMed  Google Scholar 

  36. Levin MF, Kleim JA, Wolf SL. What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehab Neural Re. 2009;23:313–9.

    CAS  Google Scholar 

  37. Roby-Brami A, et al. Motor compensation and recovery for reaching in stroke patients. Acta Neurol Scand. 2003;107:369–81.

    CAS  PubMed  Google Scholar 

  38. Cirstea MC, Levin MF. Compensatory strategies for reaching in stroke. Brain. 2000;123:940–53.

    PubMed  Google Scholar 

  39. Prange-Lasonder GB, et al. European evidence-based recommendations for clinical assessment of upper limb in neurorehabilitation (CAULIN): data synthesis from systematic reviews, clinical practice guidelines and expert consensus. J Neuroeng Rehabil. 2021;18:162.

    PubMed  PubMed Central  Google Scholar 

  40. Burridge J, et al. A systematic review of international clinical guidelines for rehabilitation of people with neurological conditions: what recommendations are made for upper limb assessment? Front Neurol. 2019;10:567.

    PubMed  PubMed Central  Google Scholar 

  41. Hughes A-M, et al. Evaluation of upper extremity neurorehabilitation using technology: a European Delphi consensus study within the EU COST Action Network on Robotics for Neurorehabilitation. J Neuroeng Rehabil. 2016;13:86.

    PubMed  PubMed Central  Google Scholar 

  42. Schwarz A, Kanzler CM, Lambercy O, Luft AR, Veerbeek JM. Systematic review on kinematic assessments of upper limb movements after stroke. Stroke. 50:718–727.

    Google Scholar 

  43. Pohl J, et al. Consensus-based core set of outcome measures for clinical motor rehabilitation after stroke—a Delphi study. Front Neurol. 2020;11:875.

    PubMed  PubMed Central  Google Scholar 

  44. Kwakkel G, et al. Standardized measurement of sensorimotor recovery in stroke trials: consensus-based core recommendations from the stroke recovery and rehabilitation roundtable. Int J Stroke. 2017;12:451–61.

    PubMed  Google Scholar 

  45. Kwakkel G, et al. Standardized measurement of quality of upper limb movement after stroke: consensus-based core recommendations from the second stroke recovery and rehabilitation roundtable. Neurorehab Neural Re. 2019;33:951–8.

    CAS  Google Scholar 

  46. Organization WH. International classification of functioning, disability and health (ICF). 2001.

    Google Scholar 

  47. Waddell KJ, Strube MJ, Tabak RG, Haire-Joshu D, Lang CE. Upper limb performance in daily life improves over the first 12 weeks poststroke. Neurorehab Neural Re. 2019;33:836–47.

    Google Scholar 

  48. Lee SI, et al. A novel upper-limb function measure derived from finger-worn sensor data collected in a free-living setting. PLoS ONE. 2019;14: e0212484.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Fugl-Meyer AR, Jääskö L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med. 1975;7:13–31.

    Google Scholar 

  50. Sullivan KJ, et al. Fugl-Meyer assessment of sensorimotor function after stroke. Stroke. 2011;42:427–32.

    PubMed  Google Scholar 

  51. Lyle RC. A performance test for assessment of upper limb function in physical rehabilitation treatment and research. Int J Rehabil Res. 1981;4:483–92.

    CAS  PubMed  Google Scholar 

  52. Yozbatiran N, Der-Yeghiaian L, Cramer SC. A standardized approach to performing the action research arm test. Neurorehab Neural Re. 2008;22:78–90.

    Google Scholar 

  53. Singer B, Garcia-Vega J. The Fugl-Meyer upper extremity scale. j Physiother. 2017;63:53.

    PubMed  Google Scholar 

  54. van der Lee JH, Roorda LD, Beckerman H, Lankhorst GJ, Bouter LM. Improving the action research arm test: a unidimensional hierarchical scale. Clin Rehabil. 2002;16:646–53.

    CAS  PubMed  Google Scholar 

  55. Amano S. et al. Reliability of remote evaluation for the Fugl–Meyer assessment and the action research arm test in hemiparetic patients after stroke. Top Stroke Rehabil. 2018:1–6. https://doi.org/10.1080/10749357.2018.1481569.

  56. Murphy MA, Häger CK. Kinematic analysis of the upper extremity after stroke–how far have we reached and what have we grasped? Phys Ther Rev. 2015;20:137–55.

    Google Scholar 

  57. Thrane G, Sunnerhagen KS, Murphy MA. Upper limb kinematics during the first year after stroke: the stroke arm longitudinal study at the University of Gothenburg (SALGOT). J Neuroeng Rehabil. 2020;17:76.

    PubMed  PubMed Central  Google Scholar 

  58. Subramanian SK, Yamanaka J, Chilingaryan G, Levin MF. Validity of movement pattern kinematics as measures of arm motor impairment poststroke. Stroke. 2010;41:2303–8.

    PubMed  Google Scholar 

  59. Ellis MD, Lan Y, Yao J, Dewald JPA. Robotic quantification of upper extremity loss of independent joint control or flexion synergy in individuals with hemiparetic stroke: a review of paradigms addressing the effects of shoulder abduction loading. J Neuroeng Rehabil. 2016;13:95.

    PubMed  PubMed Central  Google Scholar 

  60. Milosevic B, Leardini A, Farella E. Kinect and wearable inertial sensors for motor rehabilitation programs at home: state of the art and an experimental comparison. Biomed Eng Online. 2020;19:25.

    PubMed  PubMed Central  Google Scholar 

  61. Merriaux P, Dupuis Y, Boutteau R, Vasseur P, Savatier X. A study of vicon system positioning performance. Sensors Basel Switz. 2017;17:1591.

    Google Scholar 

  62. Mavor MP, Ross GB, Clouthier AL, Karakolis T, Graham RB. Validation of an IMU suit for military-based tasks. Sensors Basel Switz. 2020;20:4280.

    Google Scholar 

  63. Kanko RM, Laende EK, Davis EM, Selbie WS, Deluzio KJ. Concurrent assessment of gait kinematics using marker-based and markerless motion capture. J Biomech. 2021;127: 110665.

    PubMed  Google Scholar 

  64. Mathiowetz V, et al. Grip and pinch strength: normative data for adults. Arch Phys Med Rehab. 1985;66:69–74.

    CAS  Google Scholar 

  65. Xu J. et al. Separable systems for recovery of finger strength and control after stroke. J Neurophysiol. 2017. https://doi.org/10.1152/jn.00123.2017.

  66. Subramanian SK, Cross MK, Hirschhauser CS, Johnson VB, Reistetter TA. Post-stroke upper limb rehabilitation using virtual reality interventions: Do outcome measures assess extent or type of motor improvement? In: 2019 Int Conf Virtual Rehabilitation Icvr. 2019. p. 1–6.

    Google Scholar 

  67. Stinear CM, Smith M-C, Byblow WD. Prediction tools for stroke rehabilitation. Stroke. 2019;50:3314–22.

    PubMed  Google Scholar 

  68. Murphy MA, Sunnerhagen KS, Johnels B, Willén C. Three-dimensional kinematic motion analysis of a daily activity drinking from a glass: a pilot study. J Neuroeng Rehabil. 2006;3:18.

    PubMed Central  Google Scholar 

  69. Murphy MA, Willén C, Sunnerhagen KS. Kinematic variables quantifying upper-extremity performance after stroke during reaching and drinking from a glass. Neurorehab Neural Re. 2011;25:71–80.

    Google Scholar 

  70. Frykberg GE, Grip H, Murphy MA. How many trials are needed in kinematic analysis of reach-to-grasp?—A study of the drinking task in persons with stroke and non-disabled controls. J Neuroeng Rehabil. 2021;18:101.

    PubMed  PubMed Central  Google Scholar 

  71. David A, Subash T, Varadhan SKM, Melendez-Calderon A, Balasubramanian S. A framework for sensor-based assessment of upper-limb functioning in hemiparesis. Front Hum Neurosci. 2021;15: 667509.

    PubMed  PubMed Central  Google Scholar 

  72. Thrane G, Emaus N, Askim T, Anke A. Arm use in patients with subacute stroke monitored by accelerometry: association with motor impairment and influence on self-dependence. J Rehabil Med. 2011;43:299–304.

    PubMed  Google Scholar 

  73. Kim GJ, Parnandi A, Eva S, Schambra H. The use of wearable sensors to assess and treat the upper extremity after stroke: a scoping review. Disabil Rehabil. 2021:1–20. https://doi.org/10.1080/09638288.2021.1957027.

  74. Wang Q, Markopoulos P, Yu B, Chen W, Timmermans A. Interactive wearable systems for upper body rehabilitation: a systematic review. J Neuroeng Rehabil. 2017;14:20.

    PubMed  PubMed Central  Google Scholar 

  75. Iosa M, Picerno P, Paolucci S, Morone G. Wearable inertial sensors for human movement analysis. Expert Rev Med Devic. 2016;13:1–19.

    Google Scholar 

  76. Yang L, Zhang L, Dong H, Alelaiwi A, Saddik AE. Evaluating and improving the depth accuracy of kinect for windows v2. IEEE Sens J. 2015;15:4275–85.

    Google Scholar 

  77. Yeung L-F, Yang Z, Cheng KC-C, Du D, Tong RK-Y. Effects of camera viewing angles on tracking kinematic gait patterns using Azure Kinect, Kinect v2 and Orbbec Astra Pro v2. Gait Posture. 2021;87:19–26.

    PubMed  Google Scholar 

  78. Wang J, et al. Deep 3D human pose estimation: a review. Comput Vis Image Und. 2021;210: 103225.

    Google Scholar 

  79. Mathis A, Schneider S, Lauer J, Mathis MW. A primer on motion capture with deep learning: principles, pitfalls, and perspectives. Neuron. 2020;108:44–65.

    CAS  PubMed  Google Scholar 

  80. Needham L, et al. The accuracy of several pose estimation methods for 3D joint centre localisation. Sci Rep-UK. 2021;11:20673.

    CAS  Google Scholar 

  81. Arac A. Machine learning for 3D kinematic analysis of movements in neurorehabilitation. Curr Neurol Neurosci. 2020;20:29.

    Google Scholar 

  82. Din SD, Patel S, Cobelli C, Bonato P. Estimating Fugl-Meyer clinical scores in stroke survivors using wearable sensors. In: 2011 Annu Int Conf Ieee Eng Medicine Biology Soc. 2011. p. 5839–5842.

    Google Scholar 

  83. Kim W-S, Cho S, Baek D, Bang H, Paik N-J. Upper extremity functional evaluation by Fugl-Meyer assessment scoring using depth-sensing camera in hemiplegic stroke patients. PLoS ONE. 2016;11: e0158640.

    PubMed  PubMed Central  Google Scholar 

  84. Yu L, Xiong D, Guo L, Wang J. A remote quantitative Fugl-Meyer assessment framework for stroke patients based on wearable sensor networks. Comput Meth Prog Bio. 2016;128:100–10.

    Google Scholar 

  85. Adans-Dester C, et al. Enabling precision rehabilitation interventions using wearable sensors and machine learning to track motor recovery. Npj Digital Med. 2020;3:121.

    Google Scholar 

  86. Chin LF, Hayward KS, Brauer S. Upper limb use differs among people with varied upper limb impairment levels early post-stroke: a single-site, cross-sectional, observational study. Top Stroke Rehabil. 2019;27:1–12.

    Google Scholar 

  87. Strømmen AM, Christensen T, Jensen K. Quantitative measurement of physical activity in acute ischemic stroke and transient ischemic attack. Stroke. 2014;45:3649–55.

    PubMed  Google Scholar 

  88. Schambra HM, et al. A taxonomy of functional upper extremity motion. Front Neurol. 2019;10:857.

    PubMed  PubMed Central  Google Scholar 

  89. Lemmens RJM, Janssen-Potten YJM, Timmermans AAA, Smeets RJEM, Seelen HAM. Recognizing complex upper extremity activities using body worn sensors. PLoS ONE. 2015;10: e0118642.

    PubMed  PubMed Central  Google Scholar 

  90. Panwar M, et al. Rehab-net: deep learning framework for arm movement classification using wearable sensors for stroke rehabilitation. IEEE T Bio-med Eng. 2018;66:3026–37.

    Google Scholar 

  91. Biswas D, et al. Recognition of elementary arm movements using orientation of a tri-axial accelerometer located near the wrist. Physiol Meas. 2014;35:1751–68.

    PubMed  Google Scholar 

  92. Ward NS, Brander F, Kelly K. Intensive upper limb neurorehabilitation in chronic stroke: outcomes from the Queen Square programme. J Neurology Neurosurg Psychiatry. 2019;90:498.

    Google Scholar 

  93. Ballester BR. et al. Relationship between intensity and recovery in post-stroke rehabilitation: a retrospective analysis. J Neurology Neurosurg Psychiatry jnnp. 2021. https://doi.org/10.1136/jnnp-2021-326948.

  94. Krakauer JW, Carmichael ST, Corbett D, Wittenberg GF. Getting neurorehabilitation right. Neurorehab Neural Re. 2012;26:923–31.

    Google Scholar 

  95. Maier M, Ballester BR, Verschure PFMJ. Principles of neurorehabilitation after stroke based on motor learning and brain plasticity mechanisms. Front Syst Neurosci. 2019;13:74.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Gittler M, Davis AM. Guidelines for adult stroke rehabilitation and recovery. JAMA. 2018;319:820–1.

    PubMed  Google Scholar 

  97. Foundation S. Clinical guidelines for stroke management. 2017. https://informme.org.au/en/Guidelines/Clinical-Guidelines-for-Stroke-Management.

  98. Lambercy O, et al. Neurorehabilitation from a distance: can intelligent technology support decentralized access to quality therapy? Front Robot AI. 2021;8: 612415.

    PubMed  PubMed Central  Google Scholar 

  99. Lee SH, et al. Comparisons between end-effector and exoskeleton rehabilitation robots regarding upper extremity function among chronic stroke patients with moderate-to-severe upper limb impairment. Sci Rep-UK. 2020;10:1806.

    CAS  Google Scholar 

  100. Chen Y, et al. Home-based technologies for stroke rehabilitation: a systematic review. Int J Med Inform. 2018;123:11–22.

    PubMed  PubMed Central  Google Scholar 

  101. Sigrist R, Rauter G, Riener R, Wolf P. Augmented visual, auditory, haptic, and multimodal feedback in motor learning: a review. Psychon B Rev. 2013;20:21–53.

    Google Scholar 

  102. Riener R. Virtual reality for neurorehabilitation. In: Dietz V, Ward N (eds) Oxford textbook of neurorehabilitation. Oxford Medicine Online; 2016. https://doi.org/10.1093/med/9780199673711.003.0034.

  103. Amorim P, Santos BS, Dias P, Silva S, Martins H. Serious games for stroke telerehabilitation of upper limb - a review for future research. Int J Telerehabilitation. 2020;12:65–76.

    Google Scholar 

  104. Kim W-S, et al. Clinical application of virtual reality for upper limb motor rehabilitation in stroke: review of technologies and clinical evidence. J Clin Medicine. 2020;9:3369.

    Google Scholar 

  105. Da-Silva RH, et al. Prompting arm activity after stroke: A clinical proof of concept study of wrist-worn accelerometers with a vibrating alert function. J Rehabil Assistive Technol Eng. 2018;5:2055668318761524.

    Google Scholar 

  106. Da-Silva RH, et al. Wristband Accelerometers to motiVate arm Exercises after Stroke (WAVES): a pilot randomized controlled trial. Clin Rehabil. 2019;33:1391–403.

    PubMed  Google Scholar 

  107. Chae SH, Kim Y, Lee K-S, Park H-S. Development and clinical evaluation of a web-based upper limb home rehabilitation system using a smartwatch and machine learning model for chronic stroke survivors: prospective comparative study. Jmir Mhealth Uhealth. 2020;8: e17216.

    PubMed  PubMed Central  Google Scholar 

  108. Lee SI, et al. Enabling stroke rehabilitation in home and community settings: a wearable sensor-based approach for upper-limb motor training. IEEE J Transl Eng Heal Med. 2018;6:2100411.

    Google Scholar 

  109. Whitford M, Schearer E, Rowlett M. Effects of in home high dose accelerometer-based feedback on perceived and actual use in participants chronic post-stroke. Physiother Theor Pr. 2018;36:1–11.

    Google Scholar 

  110. Parker J, Powell L, Mawson S. Effectiveness of upper limb wearable technology for improving activity and participation in adult stroke survivors: systematic review. J Med Internet Res. 2020;22: e15981.

    PubMed  PubMed Central  Google Scholar 

  111. Merians AS, et al. Virtual reality–augmented rehabilitation for patients following stroke. Phys Ther. 2002;82:898–915.

    PubMed  Google Scholar 

  112. Subramanian SK, Cross MK, Hirschhauser CS. Virtual reality interventions to enhance upper limb motor improvement after a stroke: commonly used types of platform and outcomes. Disabil Rehabil Assistive Technol. 2020:1–9. https://doi.org/10.1080/17483107.2020.1765422.

  113. Slater M, Wilbur S. A framework for immersive virtual environments (FIVE): speculations on the role of presence in virtual environments. Presence Teleoperators Virtual Environ. 1997;6:603–16.

    Google Scholar 

  114. Voinescu A, Sui J, Fraser DS. Virtual reality in neurorehabilitation: an umbrella review of meta-analyses. J Clin Med. 2021;10:1478.

    PubMed  PubMed Central  Google Scholar 

  115. Morel M, Bideau B, Lardy J, Kulpa R. Advantages and limitations of virtual reality for balance assessment and rehabilitation. Neurophysiol Clinique Clin Neurophys. 2015;45:315–26.

    CAS  Google Scholar 

  116. Levac DE, Huber ME, Sternad D. Learning and transfer of complex motor skills in virtual reality: a perspective review. J Neuroeng Rehabil. 2019;16:121.

    PubMed  PubMed Central  Google Scholar 

  117. Perrochon A, Borel B, Istrate D, Compagnat M, Daviet J-C. Exercise-based games interventions at home in individuals with a neurological disease: a systematic review and meta-analysis. Ann Phys Rehabil Med. 2019;62:366–78.

    PubMed  Google Scholar 

  118. Cramer SC, et al. Efficacy of home-based telerehabilitation vs in-clinic therapy for adults after stroke: a randomized clinical trial. Jama Neurol. 2019;76:1079.

    PubMed  PubMed Central  Google Scholar 

  119. Akbari A, Haghverd F, Behbahani S. Robotic home-based rehabilitation systems design: from a literature review to a conceptual framework for community-based remote therapy during COVID-19 pandemic. Front Robot AI. 2021;8: 612331.

    PubMed  PubMed Central  Google Scholar 

  120. Gassert R, Dietz V. Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective. J Neuroeng Rehabil. 2018;15:46.

    PubMed  PubMed Central  Google Scholar 

  121. Noronha B, Accoto D. Exoskeletal devices for hand assistance and rehabilitation: a comprehensive analysis of state-of-the-art technologies. IEEE Trans Med Robot Bionics. 2021;3:525–38.

    Google Scholar 

  122. Ranzani R. Towards minimally-supervised robot-assisted therapy of hand function to increase therapy dose after stroke. 2021.

    Google Scholar 

  123. Mehrholz J, Pohl M, Platz T, Kugler J, Elsner B. Electromechanical and robot‐assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Db Syst Rev. 2018;2018:CD006876

    Google Scholar 

  124. Veerbeek JM, Langbroek-Amersfoort AC, van Wegen EEH, Meskers CGM, Kwakkel G. Effects of robot-assisted therapy for the upper limb after stroke. Neurorehab Neural Re. 2017;31:107–21.

    Google Scholar 

  125. Wu J, Cheng H, Zhang J, Yang S, Cai S. Robot-assisted therapy for upper extremity motor impairment after stroke: a systematic review and meta-analysis. Phys Ther. 2021;101.

    Google Scholar 

  126. Mehrholz J, Pollock A, Pohl M, Kugler J, Elsner B. Systematic review with network meta-analysis of randomized controlled trials of robotic-assisted arm training for improving activities of daily living and upper limb function after stroke. J Neuroeng Rehabil. 2020;17:83.

    PubMed  PubMed Central  Google Scholar 

  127. Linder SM. et al. Improving quality of life and depression after stroke through telerehabilitation. Am J Occup Ther. 2015;69:6902290020p1–6902290020p10.

    Google Scholar 

  128. Manjunatha H, et al. Upper limb home-based robotic rehabilitation during covid-19 outbreak. Front Robot AI. 2021;8: 612834.

    PubMed  PubMed Central  Google Scholar 

  129. Babič J. et al. Challenges and solutions for application and wider adoption of wearable robots. Wearable Technol. 2021;2.

    Google Scholar 

  130. Proulx CE, et al. Review of the effects of soft robotic gloves for activity-based rehabilitation in individuals with reduced hand function and manual dexterity following a neurological event. J Rehabil Assistive Technol Eng. 2020;7:2055668320918130.

    Google Scholar 

  131. Duncan PW, et al. Management of adult stroke rehabilitation care. Stroke. 2005;36:e100–43.

    PubMed  Google Scholar 

  132. Wade DT, Wood VA, Heller A, Maggs J, Hewer RL. Walking after stroke. measurement and recovery over the first 3 months. Scand J Rehabil Med. 1987;19:25–30.

    Google Scholar 

  133. Combs SA, et al. Is walking faster or walking farther more important to persons with chronic stroke? Disabil Rehabil. 2012;35:860–7.

    PubMed  Google Scholar 

  134. Blennerhassett JM, Levy CE, Mackintosh A, Yong A, McGinley JL. One-quarter of people leave inpatient stroke rehabilitation with physical capacity for community ambulation. J Stroke Cerebrovasc Dis. 2018;27:3404–10.

    PubMed  Google Scholar 

  135. de Graaf JA, et al. Long-term restrictions in participation in stroke survivors under and over 70 years of age. Disabil Rehabil. 2017;40:1–9.

    Google Scholar 

  136. Portelli R, et al. Institutionalization after stroke. Clin Rehabil. 2005;19:97–108.

    CAS  PubMed  Google Scholar 

  137. Newman AB, et al. Association of long-distance corridor walk performance with mortality, cardiovascular disease, mobility limitation, and disability. JAMA. 2006;295:2018–26.

    CAS  PubMed  Google Scholar 

  138. Wade DT, Skilbeck CE, Wood VA, Hewer RL. Long-term survival after stroke. Age Ageing. 1984;13:76–82.

    CAS  PubMed  Google Scholar 

  139. Grau-Pellicer M, Chamarro-Lusar A, Medina-Casanovas J, Ferrer B-CS. Walking speed as a predictor of community mobility and quality of life after stroke. Top Stroke Rehabil. 2019;26:349–58.

    PubMed  Google Scholar 

  140. Zahuranec DB, Skolarus LE, Feng C, Freedman VA, Burke JF. Activity limitations and subjective well-being after stroke. Neurology. 2017;89:944–50.

    PubMed  PubMed Central  Google Scholar 

  141. Harris JE, Eng JJ. Goal priorities Identified through client-centred measurement in individuals with chronic stroke. Physiother Can. 2004;56:171.

    PubMed  Google Scholar 

  142. Wade DT. Measurement in neurological rehabilitation. Curr Opin Neurol Neu. 1992;5:682–6.

    CAS  Google Scholar 

  143. Butland RJ, Pang J, Gross ER, Woodcock AA, Geddes DM. Two-, six-, and 12-minute walking tests in respiratory disease. Br Med J Clin Res Ed. 1982;284:1607.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39:142–8.

    CAS  PubMed  Google Scholar 

  145. Cheng DK-Y, et al. Distance-limited walk tests post-stroke: A systematic review of measurement properties. NeuroRehabilitation. 2021;48:413–39.

    PubMed  PubMed Central  Google Scholar 

  146. Cheng DK, Nelson M, Brooks D, Salbach NM. Validation of stroke-specific protocols for the 10-meter walk test and 6-minute walk test conducted using 15-meter and 30-meter walkways. Top Stroke Rehabil. 2019;27:1–11.

    Google Scholar 

  147. Lexell J, Flansbjer U-B, Holmbäck AM, Downham D, Patten C. Reliability of gait performance tests in men and women with hemiparesis after stroke. J Rehabil Med. 2005;37:75–82.

    PubMed  Google Scholar 

  148. Tilson JK, et al. Meaningful gait speed improvement during the first 60 days poststroke: minimal clinically important difference. Phys Ther. 2010;90:196–208.

    PubMed  PubMed Central  Google Scholar 

  149. Fulk GD, Echternach JL, Nof L, O’Sullivan S. Clinometric properties of the six-minute walk test in individuals undergoing rehabilitation poststroke. Physiother Theor Pr. 2009;24:195–204.

    Google Scholar 

  150. Salbach NM, et al. Considerations for the selection of time-limited walk tests poststroke. J Neurol Phys Ther. 2017;41:3–17.

    PubMed  Google Scholar 

  151. Morris S, Morris ME, Iansek R. Reliability of measurements obtained with the timed “Up & Go” test in people with Parkinson Disease. Phys Ther. 2001;81:810–8.

    CAS  PubMed  Google Scholar 

  152. Hafsteinsdóttir TB, Rensink M, Schuurmans M. Clinimetric properties of the timed up and go test for patients with stroke: a systematic review. Top Stroke Rehabil. 2014;21:197–210.

    PubMed  Google Scholar 

  153. Chan PP, Tou JIS, Tse MM, Ng SS. Reliability and validity of the timed up and go test with a motor task in people with chronic stroke. Arch Phys Med Rehab. 2017;98:2213–20.

    Google Scholar 

  154. Coutts F. Gait analysis in the therapeutic environment. Manual Ther. 1999;4:2–10.

    CAS  Google Scholar 

  155. Mohan DM, et al. Assessment methods of post-stroke gait: a scoping review of technology-driven approaches to gait characterization and analysis. Front Neurol. 2021;12: 650024.

    PubMed  PubMed Central  Google Scholar 

  156. Burridge JH, Hughes A-M. Potential for new technologies in clinical practice. Curr Opin Neurol. 2010;23:671–7.

    PubMed  Google Scholar 

  157. Parks MT, Wang Z, Siu K-C. Current low-cost video-based motion analysis options for clinical rehabilitation: a systematic review. Phys Ther. 2019;99:1405–25.

    PubMed  Google Scholar 

  158. Kirtley C. Clinical gait analysis: theory and practice. 2006.

    Google Scholar 

  159. Perry J, Burnfield J. Gait analysis: normal and pathological function. 2010.

    Google Scholar 

  160. Simon SR. Quantification of human motion: gait analysis—benefits and limitations to its application to clinical problems. J Biomech. 2004;37:1869–80.

    PubMed  Google Scholar 

  161. Muro-de-la-Herran A, Garcia-Zapirain B, Mendez-Zorrilla A. Gait analysis methods: an overview of wearable and non-wearable systems highlighting clinical applications. Sensors. 2014;14:3362–94.

    PubMed  PubMed Central  Google Scholar 

  162. Colyer SL, Evans M, Cosker DP, Salo AIT. A review of the evolution of vision-based motion analysis and the integration of advanced computer vision methods towards developing a markerless system. Sports Med Open. 2018;4:24.

    PubMed  PubMed Central  Google Scholar 

  163. Balta D. et al. A two-dimensional clinical gait analysis protocol based on markerless recordings from a single RGB-Depth camera. In: 2020 IEEE Int symposium medical meas appl memea. 2020. p. 1–6.

    Google Scholar 

  164. Mehta D, et al. VNect. Acm Trans Graph Tog. 2017;36:1–14.

    Google Scholar 

  165. Bartol K, Bojanic D, Petkovic T, D’Apuzzo N, Pribanic T. A review of 3D human pose estimation from 2D images. In: 11th International conference and exhibition on 3D body scanning and processing technologies. 2020.

    Google Scholar 

  166. Sarafianos N, Boteanu B, Ionescu B, Kakadiaris IA. 3D Human pose estimation: a review of the literature and analysis of covariates. Comput Vis Image Und. 2016;152:1–20.

    Google Scholar 

  167. Stamm O, Heimann-Steinert A. Accuracy of monocular two-dimensional pose estimation compared with a reference standard for kinematic multiview analysis: validation study. Jmir Mhealth Uhealth. 2020;8: e19608.

    PubMed  PubMed Central  Google Scholar 

  168. Guzik A, et al. Establishing the minimal clinically important differences for sagittal hip range of motion in chronic stroke patients. Front Neurol. 2021;12: 700190.

    PubMed  PubMed Central  Google Scholar 

  169. Guzik A, Drużbicki M, Wolan-Nieroda A, Turolla A, Kiper P. Estimating minimal clinically important differences for knee range of motion after stroke. J Clin Medicine. 2020;9:3305.

    Google Scholar 

  170. Calabrese E. et al. DHP19: dynamic vision sensor 3D human pose dataset. In: 2019 IEEE Cvf conf comput vis pattern recognit work cvprw. 2019. p. 1695–1704.

    Google Scholar 

  171. Yoon S, et al. Development and validation of 2D-LiDAR-based gait analysis instrument and algorithm. Sensors. 2021;21:414.

    PubMed  PubMed Central  Google Scholar 

  172. Sakdarakse S, Somboon P. Development of LIDAR based gait training system with gait assessment. In: 2020 17th Int conf electr eng electron comput telecommun information technology ecti-con. 2020. p. 263–266.

    Google Scholar 

  173. Glandon A. et al. 3D skeleton estimation and human identity recognition using lidar full motion video. In: 2019 Int Jt Conf Neural Networks Ijcnn. 2019. p. 1–8.

    Google Scholar 

  174. von Marcard T, Henschel R, Black MJ, Rosenhahn B, Pons-Moll G. Recovering accurate 3D human pose in the wild using IMUs and a moving camera. In: Computer vision–ECCV 2018, 15th European conference. 2018. p. 614–631. https://doi.org/10.1007/978-3-030-01249-6_37.

  175. Basu CK, Deacon F, Hutchinson JR, Wilson AM. The running kinematics of free-roaming giraffes, measured using a low cost unmanned aerial vehicle (UAV). PeerJ. 2019;7: e6312.

    PubMed  PubMed Central  Google Scholar 

  176. Lafferty L. et al. Clinical indoor running gait analysis may not approximate outdoor running gait based on novel drone technology. Sports Heal Multidiscip Approach. 2021:194173812110509. https://doi.org/10.1177/19417381211050931.

  177. Poitras I, et al. Validity and reliability of wearable sensors for joint angle estimation: a systematic review. Sensors Basel Switz. 2019;19:1555.

    Google Scholar 

  178. Petraglia F. et al. Inertial sensors versus standard systems in gait analysis: a systematic review and meta-analysis. Eur J Phys Rehab Med. 2019:55.

    Google Scholar 

  179. Soulard J, Vaillant J, Balaguier R, Vuillerme N. Spatio-temporal gait parameters obtained from foot-worn inertial sensors are reliable in healthy adults in single- and dual-task conditions. Sci Rep-UK. 2021;11:10229.

    CAS  Google Scholar 

  180. Lefeber N, Degelaen M, Truyers C, Safin I, Beckwée D. Validity and reproducibility of inertial physilog sensors for spatiotemporal gait analysis in patients with stroke. IEEE T Neur Sys Reh. 2019;27:1865–74.

    Google Scholar 

  181. Wüest S, Massé F, Aminian K, Gonzenbach R, de Bruin ED. Reliability and validity of the inertial sensor-based Timed “Up and Go” test in individuals affected by stroke. J Rehabil Res Dev. 2016;53:599–610.

    Google Scholar 

  182. Yang S, Zhang J-T, Novak AC, Brouwer B, Li Q. Estimation of spatio-temporal parameters for post-stroke hemiparetic gait using inertial sensors. Gait Posture. 2013;37:354–8.

    PubMed  Google Scholar 

  183. Zhang W, et al. Gait symmetry assessment with a low back 3D accelerometer in post-stroke patients. Sensors. 2018;18:3322.

    PubMed  PubMed Central  Google Scholar 

  184. Peters DM, et al. Utilization of wearable technology to assess gait and mobility post-stroke: a systematic review. J Neuroeng Rehabil. 2021;18:67.

    PubMed  PubMed Central  Google Scholar 

  185. Ferraris C, et al. Monitoring of gait parameters in post-stroke individuals: a feasibility study using RGB-D sensors. Sensors. 2021;21:5945.

    PubMed  PubMed Central  Google Scholar 

  186. Cao Z, Simon T, Wei SE, Sheikh Y. Realtime multi-person 2D pose estimation using part affinity fields. In: 2017 IEEE Conf comput vis pattern recognit cvpr. 2017. p. 1302–1310. https://doi.org/10.1109/cvpr.2017.143.

  187. Pedersen JCL. et al. Improving the accuracy of intelligent pose estimation systems through low level image processing operations. In: International conference on digital image & signal processing (DISP’19). 2019.

    Google Scholar 

  188. Routhier F, et al. Clinicians’ perspectives on inertial measurement units in clinical practice. PLoS ONE. 2020;15: e0241922.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Block VAJ, et al. Remote physical activity monitoring in neurological disease: a systematic review. PLoS ONE. 2016;11: e0154335.

    PubMed  PubMed Central  Google Scholar 

  190. Wu J, et al. An intelligent in-shoe system for gait monitoring and analysis with optimized sampling and real-time visualization capabilities. Sensors. 2021;21:2869.

    PubMed  PubMed Central  Google Scholar 

  191. MacLellan MJ, Patla AE. Adaptations of walking pattern on a compliant surface to regulate dynamic stability. Exp Brain Res. 2006;173:521–30.

    PubMed  Google Scholar 

  192. Truong PH, Lee J, Kwon A-R, Jeong G-M. Stride counting in human walking and walking distance estimation using insole sensors. Sensors. 2016;16:823.

    PubMed  PubMed Central  Google Scholar 

  193. van de Port I, Wevers L, Kwakkel G. Is outdoor use of the six-minute walk test with a global positioning system in stroke patients’ own neighbourhoods reproducible and valid? J Rehabil Med. 2011;43:1027–31.

    PubMed  Google Scholar 

  194. Wing MG, Eklund A, Kellogg LD. Consumer-grade global positioning system (GPS) accuracy and reliability. J Forest. 2005;103:169–73.

    Google Scholar 

  195. Ullrich M, et al. Detection of unsupervised standardized gait tests from real-world inertial sensor data in Parkinson’s Disease. IEEE T Neur Sys Reh. 2021;29:2103–11.

    Google Scholar 

  196. Kawai H, et al. Association between daily living walking speed and walking speed in laboratory settings in healthy older adults. Int J Environ Res Pu. 2020;17:2707.

    Google Scholar 

  197. Takayanagi N, et al. Relationship between daily and in-laboratory gait speed among healthy community-dwelling older adults. Sci Rep-uk. 2019;9:3496.

    Google Scholar 

  198. Toosizadeh N, et al. Motor performance assessment in Parkinson’s Disease: association between objective in-clinic, objective in-home, and subjective/semi-objective measures. PLoS ONE. 2015;10: e0124763.

    PubMed  PubMed Central  Google Scholar 

  199. Polhemus A, et al. Walking on common ground: a cross-disciplinary scoping review on the clinical utility of digital mobility outcomes. Npj Digital Med. 2021;4:149.

    Google Scholar 

  200. Warmerdam E, et al. Long-term unsupervised mobility assessment in movement disorders. Lancet Neurol. 2020;19:462–70.

    PubMed  Google Scholar 

  201. Atrsaei A, et al. Gait speed in clinical and daily living assessments in Parkinson’s disease patients: performance versus capacity. Npj Park Dis. 2021;7:24.

    CAS  Google Scholar 

  202. Martindale CF, Christlein V, Klumpp P, Eskofier BM. Wearables-based multi-task gait and activity segmentation using recurrent neural networks. Neurocomputing. 2021;432:250–61.

    Google Scholar 

  203. Dehzangi O, Taherisadr M, ChangalVala R. IMU-based gait recognition using convolutional neural networks and multi-sensor fusion. Sensors. 2017;17:2735.

    PubMed  PubMed Central  Google Scholar 

  204. Rast FM, Labruyère R. Systematic review on the application of wearable inertial sensors to quantify everyday life motor activity in people with mobility impairments. J Neuroeng Rehabil. 2020;17:148.

    PubMed  PubMed Central  Google Scholar 

  205. Jourdan T, Debs N, Frindel C. The contribution of machine learning in the validation of commercial wearable sensors for gait monitoring in patients: a systematic review. Sensors. 2021;21:4808.

    PubMed  PubMed Central  Google Scholar 

  206. Porciuncula F, et al. Wearable movement sensors for rehabilitation: a focused review of technological and clinical advances. Pm&r. 2018;10:S220–32.

    Google Scholar 

  207. Chen S, Lach J, Lo B, Yang G-Z. Toward pervasive gait analysis with wearable sensors: a systematic review. IEEE J Biomed Health. 2016;20:1521–37.

    Google Scholar 

  208. Werner C, Easthope CA, Curt A, Demkó L. Towards a mobile gait analysis for patients with a spinal cord injury: a robust algorithm validated for slow walking speeds. Sensors. 2021;21:7381.

    PubMed  PubMed Central  Google Scholar 

  209. Tietsch M, et al. Robust step detection from different waist-worn sensor positions: implications for clinical studies. Digital Biomarkers. 2020;4:50–8.

    PubMed  PubMed Central  Google Scholar 

  210. Dorsey ER, Glidden AM, Holloway MR, Birbeck GL, Schwamm LH. Teleneurology and mobile technologies: the future of neurological care. Nat Rev Neurol. 2018;14:285–97.

    PubMed  Google Scholar 

  211. Bravata DM, et al. Using pedometers to increase physical activity and improve health: a systematic review. JAMA. 2007;298:2296–304.

    CAS  PubMed  Google Scholar 

  212. Rozanski GM, Aqui A, Sivakumaran S, Mansfield A. Consumer wearable devices for activity monitoring among individuals after a stroke: a prospective comparison. Jmir Cardio. 2018;2: e1.

    PubMed  PubMed Central  Google Scholar 

  213. Degroote L, Bourdeaudhuij ID, Verloigne M, Poppe L, Crombez G. The accuracy of smart devices for measuring physical activity in daily life: validation study. Jmir Mhealth Uhealth. 2018;6: e10972.

    PubMed  PubMed Central  Google Scholar 

  214. Tedesco S, et al. Accuracy of consumer-level and research-grade activity trackers in ambulatory settings in older adults. PLoS ONE. 2019;14: e0216891.

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Henriksen A, et al. Using fitness trackers and smartwatches to measure physical activity in research: analysis of consumer wrist-worn wearables. J Med Internet Res. 2018;20: e110.

    PubMed  PubMed Central  Google Scholar 

  216. Huang Y, Xu J, Yu B, Shull PB. Validity of FitBit, Jawbone UP, Nike+ and other wearable devices for level and stair walking. Gait Posture. 2016;48:36–41.

    PubMed  Google Scholar 

  217. Altilio R, Liparulo L, Panella M, Proietti A, Paoloni M. Multimedia and gaming technologies for telerehabilitation of motor disabilities [Leading Edge]. IEEE Technol Soc Mag. 2015;34:23–30.

    Google Scholar 

  218. Held JP, et al. Autonomous rehabilitation at stroke patients home for balance and gait: safety, usability and compliance of a virtual reality system. Eur J Phys Rehab Med. 2017. https://doi.org/10.23736/s1973-9087.17.04802-x.

    Article  Google Scholar 

  219. Cikajlo I, Rudolf M, Goljar N, Matjačić Z. Virtual reality task for telerehabilitation dynamic balance training in stroke subjects. In: 2009 Virtual rehabilitation international conference. 2009. p.121–125. https://doi.org/10.1109/icvr.2009.5174217.

  220. Trombetta M, et al. Motion rehab AVE 3D: a VR-based exergame for post-stroke rehabilitation. Comput Meth Prog Bio. 2017;151:15–20.

    Google Scholar 

  221. Henrique PPB, Colussi EL, Marchi ACBD. Effects of exergame on patients’ balance and upper limb motor function after stroke: a randomized controlled trial. J Stroke Cerebrovasc Dis. 2019;28:2351–7.

    PubMed  Google Scholar 

  222. Kannan L, Vora J, Bhatt T, Hughes SL. Cognitive-motor exergaming for reducing fall risk in people with chronic stroke: a randomized controlled trial. NeuroRehabilitation. 2019;44:493–510.

    PubMed  Google Scholar 

  223. Lupo A, et al. Effects on balance skills and patient compliance of biofeedback training with inertial measurement units and exergaming in subacute stroke: a pilot randomized controlled trial. Funct Neurol. 2018;33:131–6.

    CAS  PubMed  Google Scholar 

  224. Huber SK, Held JPO, de Bruin ED, Knols RH. Personalized motor-cognitive exergame training in chronic stroke patients—a feasibility study. Front Aging Neurosci. 2021;13: 730801.

    PubMed  PubMed Central  Google Scholar 

  225. Shull PB, Damian DD. Haptic wearables as sensory replacement, sensory augmentation and trainer–a review. J Neuroeng Rehabil. 2015;12:59.

    PubMed  PubMed Central  Google Scholar 

  226. Shull PB, Jirattigalachote W, Zhu X. An overview of wearable sensing and wearable feedback for gait retraining. In: Proceedings of the 6th international conference, Intelligent Robotics and Applications, ICIRA 2013, Busan, South Korea, 25–28 September 2013, p. 434–443. https://doi.org/10.1007/978-3-642-40852-6_44.

  227. van Meulen FB, et al. Objective evaluation of the quality of movement in daily life after stroke. Front Bioeng Biotechnol. 2016;3:210.

    PubMed  PubMed Central  Google Scholar 

  228. Schließmann D, et al. Trainer in a pocket - proof-of-concept of mobile, real-time, foot kinematics feedback for gait pattern normalization in individuals after stroke, incomplete spinal cord injury and elderly patients. J Neuroeng Rehabil. 2018;15:44.

    PubMed  PubMed Central  Google Scholar 

  229. Mikolajczyk T, et al. Advanced technology for gait rehabilitation: an overview. Adv Mech Eng. 2018;10:1687814018783627.

    Google Scholar 

  230. Genthe K, et al. Effects of real-time gait biofeedback on paretic propulsion and gait biomechanics in individuals post-stroke. Top Stroke Rehabil. 2018;25:1–8.

    Google Scholar 

  231. Massé F, et al. Improving activity recognition using a wearable barometric pressure sensor in mobility-impaired stroke patients. J Neuroeng Rehabil. 2015;12:1–15.

    Google Scholar 

  232. Tate JJ, Milner CE. Real-time kinematic, temporospatial, and kinetic biofeedback during gait retraining in patients: a systematic review. Phys Ther. 2010;90:1123–34.

    PubMed  Google Scholar 

  233. van Gelder LMA, Barnes A, Wheat JS, Heller BW. The use of biofeedback for gait retraining: a mapping review. Clin Biomech. 2018;59:159–66.

    Google Scholar 

  234. Spencer J, Wolf SL, Kesar TM. Biofeedback for post-stroke gait retraining: a review of current evidence and future research directions in the context of emerging technologies. Front Neurol. 2021;12: 637199.

    PubMed  PubMed Central  Google Scholar 

  235. Xu J, et al. Configurable, wearable sensing and vibrotactile feedback system for real-time postural balance and gait training: proof-of-concept. J Neuroeng Rehabil. 2017;14:102.

    PubMed  PubMed Central  Google Scholar 

  236. Biesmans S, Markopoulos P. Design and evaluation of SONIS, a wearable biofeedback system for gait retraining. Multimodal Technol Interact. 2020;4:60.

    Google Scholar 

  237. Ma CZ-H, Zheng Y-P, Lee WC-C. Changes in gait and plantar foot loading upon using vibrotactile wearable biofeedback system in patients with stroke. Top Stroke Rehabil. 2017;25:20–7.

    PubMed  Google Scholar 

  238. Zhang H, et al. Wearable biofeedback system to induce desired walking speed in overground gait training. Sensors. 2020;20:4002.

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Afzal MR, Pyo S, Oh M-K, Park YS, Yoon J. Evaluating the effects of delivering integrated kinesthetic and tactile cues to individuals with unilateral hemiparetic stroke during overground walking. J Neuroeng Rehabil. 2018;15:33.

    PubMed  PubMed Central  Google Scholar 

  240. Held JPO, et al. Augmented reality-based rehabilitation of gait impairments: case report. Jmir Mhealth Uhealth. 2020;8: e17804.

    PubMed  PubMed Central  Google Scholar 

  241. Massetti T, et al. The clinical utility of virtual reality in neurorehabilitation: a systematic review. J Central Nerv Syst Dis. 2018;10:1179573518813541.

    Google Scholar 

  242. Brewster S. et al. What is mixed reality? In: Proceedings of the 2019 Chi conf hum factors comput syst. 2019, p. 1–15. https://doi.org/10.1145/3290605.3300767.

  243. Morishima S. et al. Effects of head-display lag on presence in the oculus rift. In: Proceedings of the 24th Acm symposium virtual real softw technology 83. 2018. https://doi.org/10.1145/3281505.3281607.

  244. Chan ZYS, et al. Walking with head-mounted virtual and augmented reality devices: effects on position control and gait biomechanics. PLoS ONE. 2019;14: e0225972.

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Kolivand H, Sunar MS. Realistic real-time outdoor rendering in augmented reality. PLoS ONE. 2014;9: e108334.

    PubMed  PubMed Central  Google Scholar 

  246. Kress BC, Cummings WJ. Optical architecture of HoloLens mixed reality headset. Digital Opt Technol 2017;2017:103350K-1–103350K-10. https://doi.org/10.1117/12.2270017.

  247. Tuena C, et al. Usability issues of clinical and research applications of virtual reality in older people: a systematic review. Front Hum Neurosci. 2020;14:93.

    PubMed  PubMed Central  Google Scholar 

  248. Lloréns R, Noé E, Colomer C, Alcañiz M. Effectiveness, usability, and cost-benefit of a virtual reality-based telerehabilitation program for balance recovery after stroke: a randomized controlled trial. Arch Phys Med Rehab. 2015;96:418-425.e2.

    Google Scholar 

  249. Vaquero-Melchor D, Bernardos AM. Enhancing interaction with augmented reality through mid-air haptic feedback: architecture design and user feedback. Appl Sci. 2019;9:5123.

    Google Scholar 

  250. Ott R, Thalmann D, Vexo F. Haptic feedback in mixed-reality environment. Vis Comput. 2007;23:843–9.

    Google Scholar 

  251. Corbetta D, Imeri F, Gatti R. Rehabilitation that incorporates virtual reality is more effective than standard rehabilitation for improving walking speed, balance and mobility after stroke: a systematic review. J Physiother. 2015;61:117–24.

    PubMed  Google Scholar 

  252. de Rooij IJM, van de Port IGL, Meijer J-WG. Effect of virtual reality training on balance and gait ability in patients with stroke: systematic review and meta-analysis. Phys Ther. 2016;96:1905–18.

    PubMed  Google Scholar 

  253. Berthier ML. Poststroke aphasia. Drug Aging. 2005;22:163–82.

    CAS  Google Scholar 

  254. Duffy J. Motor speech disorders. (2019).

    Google Scholar 

  255. Flowers HL, Silver FL, Fang J, Rochon E, Martino R. The incidence, co-occurrence, and predictors of dysphagia, dysarthria, and aphasia after first-ever acute ischemic stroke. J Commun Disord. 2013;46:238–48.

    PubMed  Google Scholar 

  256. Wray F, Clarke D. Longer-term needs of stroke survivors with communication difficulties living in the community: a systematic review and thematic synthesis of qualitative studies. BMJ Open. 2017;7: e017944.

    PubMed  PubMed Central  Google Scholar 

  257. Cock ED, et al. Dysphagia, dysarthria and aphasia following a first acute ischaemic stroke: incidence and associated factors. Eur J Neurol. 2020;27:2014–21.

    PubMed  Google Scholar 

  258. Ruben RJ. Redefining the survival of the fittest: communication disorders in the 21st century. Laryngoscope. 2000;110:241–241.

    CAS  PubMed  Google Scholar 

  259. Worrall L, et al. What people with aphasia want: Their goals according to the ICF. Aphasiology. 2011;25:309–22.

    Google Scholar 

  260. Puyvelde MV, Neyt X, McGlone F, Pattyn N. Voice stress analysis: a new framework for voice and effort in human performance. Front Psychol. 2018;09:1994.

    Google Scholar 

  261. Themistocleous C, Eckerström M, Kokkinakis D. Voice quality and speech fluency distinguish individuals with mild cognitive impairment from healthy controls. PLoS ONE. 2020;15: e0236009.

    CAS  PubMed  PubMed Central  Google Scholar 

  262. Chiaramonte R, Vecchio M. A systematic review of measures of dysarthria severity in stroke patients. Pm&r. 2021;13:314–24.

    Google Scholar 

  263. Wallace SJ. et al. Many ways of measuring: a scoping review of measurement instruments for use with people with aphasia. Aphasiology. 2020:1–66. https://doi.org/10.1080/02687038.2020.1836318.

  264. Ziegler W, Staiger A, Schölderle T, Vogel M. Gauging the auditory dimensions of dysarthric impairment: reliability and construct validity of the Bogenhausen Dysarthria Scales (BoDyS). J Speech Lang Hear Res. 2017;60:1516–34.

    PubMed  Google Scholar 

  265. Kertesz A, Raven JC. The Western Aphasia Battery-Revised (WAB-R). (PsychCorp, 2007).

    Google Scholar 

  266. Huber W, Poeck K, Weniger D, Willmes K. Der Aachener Aphasie Test (AAT). (Hogrefe, 1983).

    Google Scholar 

  267. Brandenburg C, Worrall L, Rodriguez A, Bagraith K. Crosswalk of participation self-report measures for aphasia to the ICF: what content is being measured? Disabil Rehabil. 2014;37:1113–24.

    PubMed  Google Scholar 

  268. Armstrong E. The challenges of consensus and validity in establishing core outcome sets. Aphasiology. 2017:1–4. https://doi.org/10.1080/02687038.2017.1398804.

  269. Patel RR, et al. Recommended protocols for instrumental assessment of voice: american speech-language-hearing association expert panel to develop a protocol for instrumental assessment of vocal function. Am J Speech-Lang Pat. 2018;27:887–905.

    Google Scholar 

  270. Maryn Y, Roy N, Bodt MD, Cauwenberge PV, Corthals P. Acoustic measurement of overall voice quality: a meta-analysisa). J Acoust Soc Am. 2009;126:2619–34.

    PubMed  Google Scholar 

  271. Reetz S, Bohlender JE, Brockmann-Bauser M. Do standard instrumental acoustic, perceptual, and subjective voice outcomes indicate therapy success in patients with functional dysphonia? J Voice. 2019;33:317–24.

    PubMed  Google Scholar 

  272. Brockmann-Bauser M, Bohlender JE, Mehta DD. Acoustic perturbation measures improve with increasing vocal intensity in individuals with and without voice disorders. J Voice. 2018;32:162–8.

    CAS  PubMed  Google Scholar 

  273. Bogert B, Healy MJR, Tukey JW. The quefrency alanysis of time series for echoes ; Cepstrum, pseudo-autocovariance, cross-cepstrum and saphe cracking. In: Rosenblatt M (ed) Proceedings of the symposium on time series analysis. p. 209–243 (Wiley; 1963).

    Google Scholar 

  274. Fraile R, Godino-Llorente JI. Cepstral peak prominence: a comprehensive analysis. Biomed Signal Proces. 2014;14:42–54.

    Google Scholar 

  275. Murton O, Hillman R, Mehta D. Cepstral peak prominence values for clinical voice evaluation. Am J Speech-Lang Pat. 2020;29:1596–607.

    Google Scholar 

  276. de Jong NH, Wempe T. Praat script to detect syllable nuclei and measure speech rate automatically. Behav Res Methods. 2009;41:385–90.

    PubMed  Google Scholar 

  277. de Jong NH, Pacilly J, Heeren W. PRAAT scripts to measure speed fluency and breakdown fluency in speech automatically. Assess Educ Princ Policy Pract. 2021:1–21. https://doi.org/10.1080/0969594x.2021.1951162.

  278. Grande M, et al. Basic parameters of spontaneous speech as a sensitive method for measuring change during the course of aphasia. Int J Lang Comm Dis. 2008;43:408–26.

    Google Scholar 

  279. Hussmann K, et al. Computer-assisted analysis of spontaneous speech: quantification of basic parameters in aphasic and unimpaired language. Clin Linguist Phonet. 2012;26:661–80.

    Google Scholar 

  280. Barthel G, Djundja D, Meinzer M, Rockstroh B, Eulitz C. Aachener Sprachanalyse (ASPA): evaluation bei Patienten mit chronischer Aphasie. Sprache Stimme Gehoer. 2006;30:103–10.

    Google Scholar 

  281. Grande M, Springer L, Huber W. Richtlinien fuer die Transkription mit dem Programm ASPA (Aachener Sprachanalyse). Sprache Stimme Geh R. 2006;30:179–85.

    Google Scholar 

  282. MacWhinney B. The Childes Project. 2000. https://doi.org/10.4324/9781315805641.

    Article  Google Scholar 

  283. Brown C, Snodgrass T, Kemper SJ, Herman R, Covington MA. Automatic measurement of propositional idea density from part-of-speech tagging. Behav Res Methods. 2008;40:540–5.

    PubMed  PubMed Central  Google Scholar 

  284. Ferguson A, Spencer E, Craig H, Colyvas K. Propositional idea density in women’s written language over the lifespan: computerized analysis. Cortex. 2014;55:107–21.

    PubMed  Google Scholar 

  285. MacWhinney B, Fromm D. AphasiaBank as bigdata. Semin Speech Lang. 2016;37:010–22.

    Google Scholar 

  286. MacWhinney B, Fromm D, Forbes M, Holland A. AphasiaBank: Methods for studying discourse. Aphasiology. 2011;25:1286–307.

    PubMed  PubMed Central  Google Scholar 

  287. Fromm D, et al. Discourse characteristics in aphasia beyond the western aphasia battery cutoff. Am J Speech-Lang Pat. 2017;26:762–8.

    Google Scholar 

  288. Carrier M. Automated speech recognition in language learning: potential models, benefits and impact. Train Lang Cult. 2017;1:46–61.

    Google Scholar 

  289. Jacks A, Haley KL, Bishop G, Harmon TG. Automated speech recognition in adult stroke survivors: comparing human and computer transcriptions. Folia Phoniatr Logo. 2019;71:286–96.

    Google Scholar 

  290. Dekhtyar M, Braun EJ, Billot A, Foo L, Kiran S. Videoconference administration of the western aphasia battery–revised: feasibility and validity. Am J Speech-Lang Pat. 2020;29:673–87.

    Google Scholar 

  291. Wood E, Bhalloo I, McCaig B, Feraru C, Molnar M. Towards development of guidelines for virtual administration of paediatric standardized language and literacy assessments: considerations for clinicians and researchers. Sage Open Med. 2021;9:205031212110505.

    Google Scholar 

  292. Grillo EU, Wolfberg J. An assessment of different praat versions for acoustic measures analyzed automatically by voice value and manually by two raters. J Voice. 2020. https://doi.org/10.1016/j.jvoice.2020.12.003.

    Article  PubMed  PubMed Central  Google Scholar 

  293. Mueller A, et al. Digital endpoints for self-administered home-based functional assessment in pediatric Friedreich’s ataxia. Ann Clin Transl Neur. 2021;8:1845–56.

    Google Scholar 

  294. Brandenburg C, Worrall L, Copland D, Rodriguez A. An exploratory investigation of the daily talk time of people with non-fluent aphasia and non-aphasic peers. Int J Speech-lang Pa. 2016;19:1–12.

    Google Scholar 

  295. Hillman RE, Heaton JT, Masaki A, Zeitels SM, Cheyne HA. Ambulatory monitoring of disordered voices. Ann Otology Rhinol Laryngol. 2006;115:795–801.

    Google Scholar 

  296. Mehta DD, Stan JHV, Hillman RE. Relationships between vocal function measures derived from an acoustic microphone and a subglottal neck-surface accelerometer. IEEE ACM Trans Audio Speech Lang Process. 2016;24:659–68.

    PubMed  Google Scholar 

  297. Mehta DD, et al. Using ambulatory voice monitoring to investigate common voice disorders: research update. Front Bioeng Biotechnol. 2015;3:155.

    PubMed  PubMed Central  Google Scholar 

  298. Association ASLH. Telepractice: overview. https://www.asha.org/PRPSpecificTopic.aspx?folderid=8589934956&section=Overview (2018).

  299. Association ASLH. Scope of practice in audiology. https://www.asha.org/policy/sp2018-00353/ (2018).

  300. Association ASLH. Scope of practice in speech-language pathology. https://www.asha.org/policy/sp2016-00343/ (2016).

  301. Grillo EU. Building a successful voice telepractice program. Perspect Asha Spec Interest Groups. 2019;4:100–10.

    PubMed  PubMed Central  Google Scholar 

  302. Grillo EU. Results of a survey offering clinical insights into speech-language pathology telepractice methods. Int J Telerehabil. 2017;9:25–30.

    Google Scholar 

  303. Pitt R, Theodoros D, Hill AJ, Rodriguez AD, Russell T. The feasibility of delivering constraint-induced language therapy via the Internet. Digital Heal. 2017;3:2055207617718767.

    Google Scholar 

  304. Weidner K, Lowman J. Telepractice for adult speech-language pathology services: a systematic review. Perspect Asha Spec Interest Groups. 2020;5:326–38.

    Google Scholar 

  305. Walker JP, Price K, Watson J. Promoting social connections in a synchronous telepractice, aphasia communication group. Perspect Asha Spec Interest Groups. 2018;3:32–42.

    Google Scholar 

  306. Pitt R, Theodoros D, Hill AJ, Russell T. The impact of the telerehabilitation group aphasia intervention and networking programme on communication, participation, and quality of life in people with aphasia. Int J Speech-lang. 2018:1–11. https://doi.org/10.1080/17549507.2018.1488990.

  307. Marshall J, et al. A randomised trial of social support group intervention for people with aphasia: a Novel application of virtual reality. PLoS ONE. 2020;15: e0239715.

    CAS  PubMed  PubMed Central  Google Scholar 

  308. Hinckley JJ, Patterson JP, Carr TH. Differential effects of context- and skill-based treatment approaches: preliminary findings. Aphasiology. 2001;15:463–76.

    Google Scholar 

  309. Jamal N, Shanta S, Mahmud F, Sha’abani M. Automatic speech recognition (ASR) based approach for speech therapy of aphasic patients: a review. Aip Conf Proc. 2017;1883:020028.

    Google Scholar 

  310. Maryn Y, Bodt MD, Cauwenberge PV. Effects of biofeedback in phonatory disorders and phonatory performance: a systematic literature review. Appl Psychophys Biof. 2006;31:65–83.

    CAS  Google Scholar 

  311. Stan JHV, Mehta DD, Hillman RE. The effect of voice ambulatory biofeedback on the daily performance and retention of a modified vocal motor behavior in participants with normal voices. J Speech Lang Hear Res. 2015;58:713–21.

    PubMed  PubMed Central  Google Scholar 

  312. Stan JHV, Mehta DD, Sternad D, Petit R, Hillman RE. Ambulatory voice biofeedback: relative frequency and summary feedback effects on performance and retention of reduced vocal intensity in the daily lives of participants with normal voices. J Speech Lang Hear Res. 2017;60:853–64.

    PubMed  PubMed Central  Google Scholar 

  313. Palmer R, et al. Self-managed, computerised speech and language therapy for patients with chronic aphasia post-stroke compared with usual care or attention control (Big CACTUS): a multicentre, single-blinded, randomised controlled trial. Lancet Neurol. 2019;18:821–33.

    PubMed  PubMed Central  Google Scholar 

  314. Zheng C, Lynch L, Taylor N. Effect of computer therapy in aphasia: a systematic review. Aphasiology. 2015:1–34. https://doi.org/10.1080/02687038.2014.996521.

  315. Tjoa E, Guan C. A survey on explainable artificial intelligence (XAI): toward medical XAI. IEEE T Neur Net Lear. 2021;32:4793–813.

    Google Scholar 

  316. Willems EMG, Vermeulen J, van Haastregt JCM, Zijlstra GAR. Technologies to improve the participation of stroke patients in their home environment. Disabil Rehabil. 2021:1–11. https://doi.org/10.1080/09638288.2021.1983041.

  317. Cities P. The city as a digital playground. Gaming Media Soc Eff. 2017. https://doi.org/10.1007/978-981-10-1962-3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verena Klamroth-Marganska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Klamroth-Marganska, V., Giovanoli, S., Easthope, C.A., Schönhammer, J.G. (2022). Telerehabilitation Technology. In: Reinkensmeyer, D.J., Marchal-Crespo, L., Dietz, V. (eds) Neurorehabilitation Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-08995-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08995-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08994-7

  • Online ISBN: 978-3-031-08995-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics