Skip to main content

Performance Analysis of RF Energy Harvesting NOMA Mobile Edge Computing in Multiple Devices IIoT Networks

  • Conference paper
  • First Online:
Industrial Networks and Intelligent Systems (INISCOM 2022)

Abstract

This paper considers the efficient offloading and computation design for radio frequency energy harvesting (RF EH) uplink non-orthogonal multiple access (NOMA) industrial Internet of Thing (IIoT) network. Specifically, the system contains multiple energy-constrained devices classified into two clusters and a MEC server deployed in a wireless access point (AP). We propose a four-phase communication protocol, namely EOCD, consisting of EH, task offloading, task computation, and information feedback transmission. Cluster head (CH) scheme is applied based on the channel information state to harvest RF energy from the AP in the first phase. In the second phase, CHs offload their workload to the AP using NOMA. The AP decodes the information signal and supports the computation of offload tasks in the third phase. Finally, AP feedbacks the result to each CH. Accordingly, we derive the closed-form expressions for the successful computation probability (SCP) of the considered system and CHs. We use Monte Carlo simulations to verify the results of the mathematical analysis. The numerical results demonstrate the effects of critical system parameters such as the time switching ratio, the transmit power, the number of devices in the cluster, and the task length of our proposed EOCD scheme compared to the conventional orthogonal multiple access (OMA) schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hou, X., Ren, Z., Yang, K., Chen, C., Zhang, H., Xiao, Y.: IIoT-MEC: a novel mobile edge computing framework for 5G-enabled IIoT. In: Proceedings of Wireless Communications and Network Conferences (WCNC), pp. 1–7. IEEE, Marrakesh, Morocco (2019)

    Google Scholar 

  2. Krishnamurthi, R., Kumar, A., Gopinathan, D., Nayyar, A., Qureshi, B.: An overview of IoT sensor data processing, fusion, and analysis techniques. Sensors 20(21), 6076 (2020)

    Article  Google Scholar 

  3. Chettri, L., Bera, R.: A comprehensive survey on Internet of Things (IoT) toward 5G wireless systems. IEEE Internet Things J. 7(1), 16–32 (2019)

    Article  Google Scholar 

  4. Elkashlan, M., Duong, T.Q., Chen, H.: Millimeter-wave communications for 5G–part 2: applications [Guest Editorial]. IEEE Commun. Mag. 53(1): 166–167 (2015)

    Google Scholar 

  5. Mao, Y., You, C., Zhang, J., Huang, K., Letaief, K.B.: A survey on mobile edge computing: the communication perspective. IEEE Commun. Surv. Tut. 19(4), 2322–2358 (2017)

    Article  Google Scholar 

  6. Mach, P., Becvar, Z.: Mobile edge computing: a survey on architecture and computation offloading. IEEE Commun. Surv. Tut. 19(3), 1628–1656 (2017)

    Article  Google Scholar 

  7. Truong, V.T., Ha, D.B.: Secured scheme for RF energy harvesting mobile edge computing networks based on NOMA and access point selection. In: Proceedings of 7th NAFOSTED Conference on Information and Computer Science, pp. 7–12. IEEE, Ho Chi Minh City, Vietnam (2020). https://doi.org/10.1109/NICS51282.2020.9335833

  8. Ha, D.-B., Truong, V.-T., Ha, D.-H.: A novel secure protocol for mobile edge computing network applied downlink NOMA. In: Vo, N.-S., Hoang, V.-P. (eds.) INISCOM 2020. LNICST, vol. 334, pp. 324–336. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63083-6_25

    Chapter  Google Scholar 

  9. Truong, V.-T., Vo, M.-T., Ha, D.-B.: Performance analysis of mobile edge computing network applied uplink NOMA with RF energy harvesting. In: Vo, N.-S., Hoang, V.-P., Vien, Q.-T. (eds.) INISCOM 2021. LNICST, vol. 379, pp. 57–72. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77424-0_6

    Chapter  Google Scholar 

  10. Yang, Z., Liu, Y., Chen, Y., Tyson, G.: Deep reinforcement learning in cache-aided MEC networks. In: ICC IEEE International Conference on Communication (ICC), pp. 1–6. IEEE, Shanghai, China (2019). https://doi.org/10.1109/ICC.2019.8761349

  11. Tam, H.H.M., Tuan, H.D., Nasir, A.A., Duong, T.Q., Poor, H.V.: MIMO energy harvesting in full-duplex multi-user networks. IEEE Trans. Wirel. Commun. 16(5), 3282–3297 (2017)

    Article  Google Scholar 

  12. Sabella, D., Vaillant, A., Kuure, P., Rauschenbach, U., Giust, F.: Mobile-edge computing architecture: the role of MEC in the Internet of Things. IEEE Consum. Electron. Mag. 5(4), 84–91 (2016)

    Article  Google Scholar 

  13. Malik, R., Vu, M.: Energy-efficient joint wireless charging and computation offloading in MEC systems. IEEE J. Sel. Topics Signal Process. 15, 1110–1125 (2021)

    Article  Google Scholar 

  14. Wei, Z., Guo, J., Ng, D.W.K., Yuan, J.: Fairness comparison of uplink NOMA and OMA. In: Proceedings of IEEE 85th Vehicle Technology Conference, pp. 1–6. (IEEE) (VTC Spring) (2017)

    Google Scholar 

  15. Zhou, F., Wu, Y., Hu, R.Q., Qian, Y.: Computation efficiency in a wireless-powered Mobile Edge Computing network with NOMA. In: Proceedings IEEE International Conference on Communication (ICC), pp. 1–7. IEEE, Shanghai, China (2019). https://doi.org/10.1109/ICC.2019.8761172

  16. Zhu, J., Wang, J., Huang, Y., Fang, F., Navaie, K., Ding, Z.: Resource allocation for hybrid NOMA MEC offloading. IEEE Trans. Wireless Commun. 19(7), 4964–4977 (2020)

    Article  Google Scholar 

  17. Fang, F., Xu, Y., Ding, Z., Shen, C., Peng, M., Karagiannidis, G.K.: Optimal resource allocation for delay minimization in NOMA-MEC networks. IEEE Trans. Commun. 68(12), 7867–7881 (2020)

    Article  Google Scholar 

  18. Xue, J., An, Y.: Joint task offloading and resource allocation for multi-task multi-server NOMA-MEC networks. IEEE Access 9, 16152–16163 (2021)

    Article  Google Scholar 

  19. Sidhu, R.K., Ubhi, J.S., Aggarwal, A.: A survey study of different RF energy sources for RF energy harvesting. In: Proceedings of International Conference on Automatic, Computer and Technological Management (ICACTM), pp. 530–533. IEEE, London, UK (2019). https://doi.org/10.1109/ICACTM.2019.8776726

  20. So-In, C., Tran, H., Tran, D.D., Heng, S., Aimtongkham, P., Nguyen, A.N., et al.: On security and throughput for energy harvesting untrusted relays in IoT systems using NOMA. IEEE Access 7, 149341–149354 (2019)

    Article  Google Scholar 

  21. Vyas, R., Nishimoto, H., Tentzeris, M., Kawahara, Y., Asami, T.: A battery-less, energy harvesting device for long range scavenging of wireless power from terrestrial TV broadcasts. In Proceedings of IEEE/MTT-S International Microwave Symposium on Digest, pp. 1–3. IEEE, Montreal, QC, Canada (2012). https://doi.org/10.1109/MWSYM.2012.6259708

  22. Rauniyar, A., Engelstad, P., Osterbo, O.N.: RF energy harvesting and information transmission based on NOMA for wireless powered IoT relay systems. Sensors 18(10), 3254 (2018)

    Article  Google Scholar 

  23. Al-Baz, A., El-Sayed, A.: A new algorithm for cluster head selection in LEACHs protocol for wireless sensor networks. Int. J. Commun. Syst. 31(1), e3407 (2018)

    Article  Google Scholar 

  24. Dac-Binh, H., Duc-Dung, T., Vu, T.H., Een-Kee, H.: Performance of amplify-and-forward relaying with wireless power transfer over dissimilar channels. Elektronika ir Elektrotechnika J. 21(5), 90–95 (2015)

    Google Scholar 

  25. Ye, Y., Hu, R.Q., Lu, G., Shi, L.: Enhance latency-constrained computation in MEC networks using uplink NOMA. IEEE Trans. Commun. 68(4), 2409–2425 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

Van-Truong Truong was funded by Vingroup JSC and supported by the Master, PhD Scholarship Programme of Vingroup Innovation Foundation (VINIF), Institute of Big Data, code VINIF.2021.TS.049.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Nayyar .

Editor information

Editors and Affiliations

Appendix A: Proof of Lemma 1

Appendix A: Proof of Lemma 1

Here, from equation (14) we derive the closed-form expression of \({{\phi }^{{A^*}}_{s}}\) as (A-0).

$$\begin{aligned}&{{\phi }^{{A^*}}_{s}}=\Pr \left( {{t}_{1}}+{{\tau }_{1}}\le \left( 1-\alpha \right) T \right) \\&=\underbrace{\Pr \left( {{g}_{1}}>{{g}_{2}},{{\gamma }_{11}}\ge \underbrace{{{2}^{\frac{{{L}_{1}}}{\left( 1-\alpha \right) B{{\varOmega }_{1}}}}}-1}_{{{\gamma }_{th1}}} \right) }_{{{I}_{1}}}+\underbrace{\Pr \left( {{g}_{1}}<{{g}_{2}},{{\gamma }_{21}}\ge {{2}^{\frac{{{L}_{1}}}{\left( 1-\alpha \right) B{{\varOmega }_{1}}}}}-1 \right) }_{{{I}_{2}}}. \end{aligned}$$
(A-0)

Using the properties of CDF and PDF, we implement \(I_1\) as (A-1).

$$\begin{aligned} \begin{aligned}&{{I}_{1}}=\Pr \left( {{g}_{1}}>{{g}_{2}},\frac{a{{\gamma }_{0}}g_{1}^{2}}{a{{\gamma }_{0}}g_{2}^{2}+1}>{{\gamma }_{th1}} \right) \\&={\left\{ \begin{array}{ll} &{} \underbrace{\int \limits _{0}^{\infty }{\left[ 1-{{F}_{{{g}_{1}}}}\left( \sqrt{{{\gamma }_{th1}}\left( {{x}^{2}}+\frac{1}{a{{\gamma }_{0}}} \right) } \right) \right] {{f}_{{{g}_{2}}}}\left( x \right) dx,{{\gamma }_{th1}}<1}}_{{{I}_{11}}} \\ &{}\underbrace{\int \limits _{0}^{c_1}{\left[ 1-{{F}_{{{g}_{1}}}}\left( \sqrt{{{\gamma }_{th1}}\left( {{x}^{2}}+\frac{1}{a{{\gamma }_{0}}} \right) } \right) \right] {{f}_{{{g}_{2}}}}\left( x \right) dx}}_{I_{12}^{a}}+\underbrace{\int \limits _{c_1}^{\infty }{\left[ 1-{{F}_{{{g}_{1}}}}\left( x \right) \right] {{f}_{{{g}_{2}}}}\left( x \right) dx}}_{I_{12}^{b}},{{\gamma }_{th1}}>1 \\ \end{array}\right. } \end{aligned} \end{aligned}$$
(A-1)

Using the Gaussian-Chebyshev quadrature method, we easily calculate \(I_{11}\) as (A-2).

$$\begin{aligned} \begin{aligned}&I_{11}=-\sum \limits _{m=1}^{M}{\sum \limits _{n=1}^{N}\left( {\begin{array}{c}M\\ m\end{array}}\right) \left( {\begin{array}{c}N\\ n\end{array}}\right) (-1)^{m+n+1}\frac{n}{\lambda _2}\frac{\pi }{K}}\\&\times \sum \limits _{i=1}^{K}{\exp \left( -\frac{m}{{{\lambda }_{1}}}\sqrt{{{\gamma }_{th1}}\left( {{\ln }^{2}}\frac{1}{{{x}_{i}}}+\frac{1}{a{{\gamma }_{0}}} \right) }-\frac{n}{{{\lambda }_{2}}}\ln \frac{1}{{{x}_{i}}} \right) }\sqrt{\frac{1-{{\phi }_{i}}}{1+{{\phi }_{i}}}}, \end{aligned} \end{aligned}$$
(A-2)

where \(x_i=\frac{\phi _i+1}{2}\), \(\phi _i = cos(\frac{2i-1}{2K}\pi )\), K is the complexity-vs-accuracy trade-off coefficient. Using the same method, we calculate \(I_{12}^a\) and \(I_{12}^b\) as (A-3) and (A-4), respectively.

$$\begin{aligned} \begin{aligned}&I^a_{12}=-\sum \limits _{m=1}^{M}{\sum \limits _{n=1}^{N}\left( {\begin{array}{c}M\\ m\end{array}}\right) \left( {\begin{array}{c}N\\ n\end{array}}\right) (-1)^{m+n+1}\frac{n}{\lambda _2}\frac{\pi c_1}{2K}}\\ \times&\sum \limits _{i=1}^{K}{\exp \left( \frac{m}{\lambda _1}\sqrt{\gamma _{th1}y^2_i+\frac{1}{a\gamma _0}} - \frac{n}{\lambda _2 y_i}\right) }\sqrt{1-\phi _i^2}, \end{aligned} \end{aligned}$$
(A-3)

where \(y_i=\frac{\phi _i+1}{2}c_1\), \(\phi _i = cos(\frac{2i-1}{2K}\pi )\), K is the complexity-vs-accuracy trade-off coefficient.

$$\begin{aligned} \begin{aligned} I_{12}^{b}=-\sum \limits _{m=1}^{M}\sum \limits _{n=1}^{N}\left( {\begin{array}{c}M\\ m\end{array}}\right) \left( {\begin{array}{c}N\\ n\end{array}}\right) (-1)^{m+n+1} \frac{n\lambda _1}{m\lambda _2+n\lambda _1} \exp \left[ -c_1\left( \frac{m}{{{\lambda }_{1}}}+\frac{n}{{{\lambda }_{2}}} \right) \right] . \end{aligned} \end{aligned}$$
(A-4)

Next, we focus to derive the closed-form expression of \({I}_{2}\) as (A-5).

$$\begin{aligned} \begin{aligned}&{{I}_{2}}=\Pr \left( \underbrace{\sqrt{\frac{{{\gamma }_{th1}}}{a{{\gamma }_{0}}}}}_{d_1}<{{g}_{1}}<{{g}_{2}} \right) =\int \limits _{d_1}^{\infty }{\left[ {{F}_{{{g}_{1}}}}\left( x \right) -{{F}_{{{g}_{1}}}}\left( \sqrt{\frac{{{\lambda }_{th1}}}{a{{\gamma }_{0}}}} \right) \right] }{{f}_{{{g}_{2}}}}\left( x \right) dx\\&=-\sum \limits _{m=1}^{M}{\sum \limits _{n=1}^{N}\left( {\begin{array}{c}M\\ m\end{array}}\right) \left( {\begin{array}{c}N\\ n\end{array}}\right) (-1)^{m+n+1}\frac{m\lambda _2}{m\lambda _2+n\lambda _1} }\exp \left[ -d_1\left( \frac{m}{{{\lambda }_{1}}}+\frac{n}{{{\lambda }_{2}}} \right) \right] . \end{aligned} \end{aligned}$$
(A-5)

This concludes our proof.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Truong, VT., Ha, DB., Truong, TV., Nayyar, A. (2022). Performance Analysis of RF Energy Harvesting NOMA Mobile Edge Computing in Multiple Devices IIoT Networks. In: Vo, NS., Vien, QT., Ha, DB. (eds) Industrial Networks and Intelligent Systems. INISCOM 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 444. Springer, Cham. https://doi.org/10.1007/978-3-031-08878-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08878-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08877-3

  • Online ISBN: 978-3-031-08878-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics