Skip to main content

Scanning Electron Microscopy (SEM) in Forensic Geoscience

  • Chapter
  • First Online:
Mineralogical Analysis Applied to Forensics

Part of the book series: Soil Forensics ((SOFO))

Abstract

This chapter offers an overview of Scanning Electron Microscopy (SEM) and Electron Microanalysis fundamentals using Energy Dispersive Spectroscopy (EDS) and Wavelength Dispersive Spectroscopy (WDS). The main technical features and steps necessary to acquire high-resolution images and obtain reliable chemical analytical results are here briefly summarized. The chapter also describes the main advantages of using this non-destructive technique for forensic geosciences applications, with a particular focus on Automated Mineralogy (AM). This analytical technique expands the potentiality of modern SEM systems, allowing a rapid achievement of mineral classification and modal composition of grain mixtures. Finally, we present real case studies on applying SEM-EDS, WDS, and AM techniques to several fields of forensic geology. Significant examples will include studies on prediction of soil provenance, fingerprinting of airborne asbestos, and comparison between soils and sediment samples to test an association between a soil residue found at a crime scene and relevant items for investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amelinckx S, Van Dyck D, Van Landuyt J, Van Tendeloo G (1997) Electron microscopy, principles and fundamentals. Wiley-VCH, Weinheim, 527 pp

    Book  Google Scholar 

  • Bevins RE, Ixer RA, Pirrie D, Power MR, Cotterell T, Tindle A (2021) Alteration fabrics and mineralogy as provenance indicators; the Stonehenge dolerite Bluestones and their enigmatic “spots”. J Archaeol Sci Rep 36:102826

    Google Scholar 

  • Bull PA, Morgan RM (2006) Sediment fingerprints: a forensic technique using quartz sand grains. Sci Justice 46:107–124

    Article  Google Scholar 

  • Bruker (2017) AMICS Software—Advanced Mineral Identification and Characterization System; Brochure DOC-H82-EXS018, Rev.1. Bruker: Berlin, Germany, p. 2. Available online: https://web.archive.org/web/20200810115608/, https://www.bruker.com/de/products/x-ray-diffraction-and-elementalanalysis/eds-wds-ebsd-sem-micro-xrf-and-sem-micro-ct/quantax-eds-for-sem/amics-software.html

  • Butcher AR, Botha PWSK (2010) Automated mineralogy derives key characteristics directly from reservoir rock. The American Oil & Gas Reporter, January 2010, 4 pp

    Google Scholar 

  • Castaing R (1951) Application of electron probes to metallographic analysis. Ph.D. Dissertation, University of Paris 1951

    Google Scholar 

  • de Caritat P, Simpson T, Woods B (2019) Predictive soil Provenancing (PSP): an innovative forensic soil provenance analysis tool. J Forensic Sci 64:1359–1369

    Article  Google Scholar 

  • de Caritat P, Woods B, Simpson T, Nichols C, Hoogenboom L, Ilhea A, Aberle MG, Hoogewerff J (2021) Forensic soil provenancing in an urban/suburban setting: a sequential multivariate approach. J Forensic Sci: 66(5):1679–1696

    Google Scholar 

  • Gentile G, Andreola S, Bailo P, Battistini A, Boracchi M, Tambuzzi S, Zoja R (2020) A brief review of scanning electron microscopy with energy-dispersive X-ray use in forensic medicine. Am J Forensic Med Pathol 41(4):280–286

    Article  Google Scholar 

  • Gottlieb P, Wilkie G, Sutherland D, Ho-Tun E, Suthers S, Pereira K, Jenkins B, Spencer S, Butcher A, Rayner J (2000) Using quantitative electron microscopy for process mineralogy applications. J Miner Met Mater Soc 52(4):24–25

    Article  Google Scholar 

  • Graham SD, Brough C, Cropp A (2015) An Introduction to ZEISS Mineralogic Mining and the correlation of light microscopy with automated mineralogy: a case study using BMS and PGM analysis of samples from a PGE-bearing chromitite prospect. In: Proceedings of the Precious Metals ‘15, Falmouth, UK, 11 May 2015; Minerals Engineering International (MEI): p 11

    Google Scholar 

  • Haberlah D, Williams MAJ, Halverson G, McTainsh GH, Hill SM, Hrstka T, Jaime P, Butcher AR, Glasby P (2010) Loess and floods: high-resolution multi-proxy data of Last Glacial Maximum (LGM) slackwater deposition in the Flinders Ranges, semi-arid South Australia. Quat Sci Rev 29:2673–2693

    Article  Google Scholar 

  • Haberlah D, Owen M, Botha PWSK, Gottlieb P (2011) SEM-EDS based protocol for subsurface drilling mineral identification and petrological classification. In: Broekmans MATM (ed) Proceedings of the 10th International Congress for Applied Mineralogy (ICAM), 01-05 August 2011, Trondheim, Norway, pp 265–273

    Google Scholar 

  • Hrstka T, Gottlieb P, Skála R, Breiter K, David Motl D (2018) Automated mineralogy and petrology—applications of TESCAN Integrated Mineral Analyzer (TIMA). J Geosci 63:47–63

    Article  Google Scholar 

  • Morgan RM, Robertson J, Lennard C, Hubbard K, Bull PA (2010) Quartz grain surface textures of soils and sediments from Canberra Australia: a forensic reconstruction tool. Aust J Forensic Sci 42:169–179

    Article  Google Scholar 

  • Murphy DB, Davidson MW (2013) Fundamentals of light microscopy and electronic imaging. 2, Wiley-Blackwell, 538 pp

    Google Scholar 

  • Murray KR, Fitzpatrick RW, Bottrill RS, Berry R, Kobus H (2016) Soil transference patterns on bras: image processing and laboratory dragging. Forensic Sci Int 258:88–100

    Article  Google Scholar 

  • Murray KR, Fitzpatrick RW, Bottrill RS, Berry R, Kobus H (2017) Patterns produced when soil is transferred to bras by placing and dragging actions: the application of digital photography and image processing to support visible observations. Forensic Sci Int 276:24–40

    Article  Google Scholar 

  • Nash DJ, Ciborowski TJRR, Darvill T, Parker Pearson M, Ullyott JS, Damaschke M, Evans JA, Goderis S, Greaney S, Huggett JM, Ixer RA, Pirrie D, Power MR, Salge T, Wilkinson N (2021) Petrological and geochemical characterisation of the sarsen stones at Stonehenge. PLoS One 16(8):e0254760

    Article  Google Scholar 

  • Newell AJ, Morgan RM, Griffin DL, Bull PA, Marshall JR, Graham G (2012) Automated texture recognition of quartz sand grains for forensic applications. J Forensic Sci 57:1285–1289

    Article  Google Scholar 

  • Newbury DE, Ritchie NWM (2015) Performing elemental microanalysis with high accuracy and high precision by scanning electron microscopy/silicon drift detector energy-dispersive X-ray spectrometry (SEM/SDD-EDS). J Mater Sci 50:493–518

    Article  Google Scholar 

  • Oxford Instruments INCAMineral. Available online: https://web.archive.org/web/20200810110842/. Accessed on 10 Aug 2020

  • Oxford Instruments—AztecMineral: Dedicated Mineralogy on Multi-Purpose SEM. Available online: https://web.archive.org/web/20200810111028/. Accessed on 10 Aug 2020

  • Oxford Instruments (2012) INCAFeature. High Performance Feature Detection, Analysis and Classification; Brochure OINA/075/E/0412. Oxford Instruments: High Wycombe, UK, 2012; 4pp

    Google Scholar 

  • Petrosino P, de Gennaro R, Mondillo N (2019) Microscopia Elettronica a scansione. In: Mercurio M, Cappelletti P, Di Maggio RM, Langella A (eds) Analisi mineralogiche in ambito forense, Aracne:169–217

    Google Scholar 

  • Pirrie D, Rollinson GK (2011) Unlocking the applications of automated mineral analysis. Geol Today 27(6):226–235

    Article  Google Scholar 

  • Pirrie D, Butcher AR, Power MR, Gottlieb P, Miller GL (2004) Rapid quantitative mineral and phase analysis using automated scanning electron microscopy (QemSCAN); potential applications in forensic geoscience. Geol Soc Lond, Spec Publ 232:123–136

    Article  Google Scholar 

  • Pirrie D, Dawson LA, Graham G (2017) Predictive geolocation; forensic soil analysis for provenance determination. Episodes 40:141–147

    Article  Google Scholar 

  • Pirrie D, Crean DE, Pidduck AJ, Nicholls TM, Shail RK (2019a) Automated mineralogical analysis of soils as an indicator of local bedrock lithology: a tool for rapid forensic geolocation. Geol Soc London, Spec Publ 492. https://doi.org/10.1144/SP492-2019-42

  • Pirrie D, Pidduck A, Crean DE, Nicholls TM (2019b) Identification and analysis of man-made geological product particles to aid forensic investigation of provenance in the built environment. Forensic Sci Int 305:1–15

    Article  Google Scholar 

  • Pirrie D, Ruffell A, Dawson L, McKinley J (2021a) Crime scenes: Geoforensic assessment sampling and examination. In: Donnelly L, Pirrie D, Harrison M, Ruffell A, Dawson L (eds). A guide to forensic geology. Geological Society, London Chapter 4:88–110

    Google Scholar 

  • Pirrie D, Ruffell A, Dawson L (2021b) Geological evidence recovery from exhibits. In: Donnelly L, Pirrie D, Harrison M, Ruffell A, Dawson L (eds) A guide to forensic geology. Geological Society, London Chapter 5:111–128

    Google Scholar 

  • Reimer L (1998) Scanning electron microscopy: physics of image formation and microanalysis. Springer Verlag, Berlin Heidelberg, 527 pp

    Google Scholar 

  • Ruffell A, Pirrie D, Dawson (2021) Geological evidence analysis. In: Donnelly L, Pirrie D, Harrison M, Ruffell A, Dawson L (eds). A guide to forensic geology. Geological Society, London Chapter 6:129–156

    Google Scholar 

  • Simons B, Graham S (2016) Iron oxide analyses by Automated Mineralogy. http://www.petrolab.co.uk/

  • Stern LA, Webb JB, Willard DA, Bernhardt CE, Korejwo DA, Bottrell MC, McMahon GB, McMillan NJ, Schuetter JM, Hietpas J (2019) Geographic attribution of soils using probabilistic modeling of GIS data for forensic search efforts. Geochem Geophys Geosyst 20:1–20

    Article  Google Scholar 

  • Stoney DA, Bowen AM, Stoney PL (2015) Utilization of environmentally acquired very small particles as a means of association. Forensic Sci Int 254:26–50

    Article  Google Scholar 

  • TESCAN (2017) TIMA-X—TESCANIntegratedMineralAnalyser; Brochure 2017.04.10; TESCAN: Brno, Czech Republic, 16p

    Google Scholar 

  • Vernon-Parry AD (2000) Scanning electron microscopy: an introduction. Ill-Vs Review 13(4):3–4

    Google Scholar 

  • Zadora G, Brozek-Mucha Z (2003) SEM–EDX—a useful tool for forensic examinations. Mater Chem Phys 81:345–348

    Article  Google Scholar 

  • Zeiss—Microscopes for Automated Mineral Analysis. Available online: https://web.archive.org/web/20200724134840/https://www.zeiss.com/microscopy/int/products/scanning-electron-microscopes/mineralogic-systems.html. Accessed on 17 Oct 2021

  • Zhou W, Apkarian RP, Lin Wang Z, Joy D (2007) Fundamentals of scanning electron microscopy. In: Zhou W, Lin Wang Z (eds) Scanning microscopy for nanotechnology. Springer, New York, 1–40

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Petrosino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Petrosino, P., Pirrie, D., Santoro, L., de Gennaro, R. (2023). Scanning Electron Microscopy (SEM) in Forensic Geoscience. In: Mercurio, M., Langella, A., Di Maggio, R.M., Cappelletti, P. (eds) Mineralogical Analysis Applied to Forensics. Soil Forensics. Springer, Cham. https://doi.org/10.1007/978-3-031-08834-6_3

Download citation

Publish with us

Policies and ethics