Skip to main content

Soil Bacteria and Nematodes for Bioremediation and Amelioration of Polluted Soil

  • Chapter
  • First Online:
Microbial and Biotechnological Interventions in Bioremediation and Phytoremediation

Abstract

Soil pollution is a global problem and harbors an extensive spectrum of negative consequences on human health and agriculture. In the last two decades, bioremediation has been recognized as a potential tool to tackle the metal-contaminated or -polluted soil. Various soil bacteria and nematodes play a significant role in bioremediation and amelioration of contaminated soil and its indication, respectively. Different types of bacterial strains are preferred extensively for bioremediation of contaminated soil like Geobacter sp. (a metal-reducing bacteria) which follows electron transfer mechanism with soil, resulting in the biodegradation of toluene and bioleaching of Arsenic (As). Further, bacteria that can degrade petroleum products includes Pseudomonas, Aeromonas, Moraxella, Flavobacteria, Corynebacteria, Mycobactena, Streptomyces, Bacilli, Arthrobacter, Cyanobacteria, etc. Likewise, Mercury, Hg (II), can be biomethylated by different bacterial species such as Alcaligenes faecalis, Bacillus pumilus, Bacillus sp., P. aeruginosa, and Brevibacterium iodinium to gaseous methyl mercury. Among other soil organisms, nematodes are observed as the most promising nominees for bio indication and toxic level indicator at different trophic channels for specific substances like Chiloplacus and Pratylenchus for Copper, Paratylenchus, and Criconemoides for Chromium, and Tylenchus and Cephalobus for Zinc. Cooperation, integration, and assimilation of such modern biotechnology, as well as conventional and ethical understanding, is required for the sustainable development and repair of our environment as an alternative to detrimental techniques based on chemical processes. However, the challenges like biosafety assessment and genetic pollution involved in embracing the new initiatives for amelioration of soil pollution must not be ignored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Shafy HI, Mansour M S (2018) Microbial degradation of hydrocarbons in the environment: an overview. In: Microbial action on hydrocarbons. Springer, Singapore, pp 353–386

    Google Scholar 

  • Achazi RK (2002) Invertebrates in risk assessment. J Soils Sediments 2:174–178

    CAS  Google Scholar 

  • Adams GO, Fufeyin PT, Okoro SE, Ehinomen I (2015) Bioremediation, biostimulation and bioaugmentation: a review. Int J Environ Bioremed Biodegrad 3(1):28–39

    CAS  Google Scholar 

  • Ahmann D, Roberts AL, Krumholz LR, Morel FM (1994) Microbe grows by reducing arsenic. Nature 371(6500):750–750

    Article  CAS  PubMed  Google Scholar 

  • Ashraf MA, Hussain I, Rasheed R, Iqbal M, Riaz M, Arif MS (2017) Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: a review. J Environ Manage 198:132–143

    Article  CAS  PubMed  Google Scholar 

  • Atlas RM (1985) Effects of hydrocarbons on microorganisms and petroleum biodegradation in arctic ecosystems. Petrol Effects Arctic Environ 63–100

    Google Scholar 

  • Basta NT, Gradwohl R (1998) Remediation of heavy metalcontaminated soil using rock phosphate. Better Crops 82(4):29–31

    Google Scholar 

  • Basta NT, Ryan JA, Chaney RL (2005) Trace element chemistry in residual-treated soil: key concepts and metal bioavailability. J Environ Qual 34(1):49–63

    Article  CAS  PubMed  Google Scholar 

  • Beeby A (2001) What do sentinels stand for? Environ Pollut 112:285–298

    Article  CAS  PubMed  Google Scholar 

  • Bileva T, Stefanova V, Haytova D (2014) Assessment of nematodes as bioindicators of soil health in agroecosystems. Türk Tarım ve Doğa Bilimleri Dergisi 1(Özel Sayı-1):568–573

    Google Scholar 

  • Bongers T (1999) The Maturity Index, the evolution of nematode life-history traits, adaptive radiation, and cp-scaling. Plant Soil 212:13–22

    Article  CAS  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Biores Technol 74(1):63–67

    Article  CAS  Google Scholar 

  • Bosecker K (1997) Bioleaching: metal solubilization by microorganisms. FEMS Microbiol Rev 20(3–4):591–604

    Article  CAS  Google Scholar 

  • Brookes PC (1995) The use of microbial parameters in monitoring soil pollution by heavy metals. Biol Fertil Soils 19(4):269–279

    Article  CAS  Google Scholar 

  • Clemens S, Schroeder JI, Degenkolb T (2001) Caenorhabditis elegans expresses a functional phytochelatin synthase. Eur J Biochem 268:3640–3643

    Article  CAS  PubMed  Google Scholar 

  • Coleman DC, Reid CPP, Cole CV (1983) Biological strategies of nutrient cycling in soil systems. Adv Ecol Res 13:1–55

    Article  Google Scholar 

  • Cortet J, Gomot-De Vauflery A, Poinsot-Balaguer N, Gomot L, Texier C, Cluzeau D (1999) The use of invertebrate soil fauna in monitoring pollutant effects. Eur J Soil Biol 35:115–134

    Article  CAS  Google Scholar 

  • D’Amore JJ, Al-Abed SR, Scheckel KG, Ryan JA (2005) Methods for speciation of metals in soils: a review. J Environ Qual 34(5):1707–1745

    Article  PubMed  CAS  Google Scholar 

  • Dardanelli MS, Manyani H, González-Barroso S, Rodríguez-Carvajal MA, Gil-Serrano AM, Espuny MR, López-Baena FJ, Bellogín RA, Megías M, Ollero FJ (2010) Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant Soil 328(1–2):483–493

    Article  CAS  Google Scholar 

  • Das M, Adholeya A (2012) Role of microorganisms in remediation of contaminated soil. In: Microorganisms in environmental management. Springer, Dordrecht, pp 81–111

    Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:941810

    Article  PubMed  Google Scholar 

  • De Man JG (1884) Die frei in der reinen Erde und imsüssen Wasserlebenden Nematoden der niederländischen Fauna. In: Brill EJ (ed) Einesystematisch-faunistische Monographie. Leiden, pp 1–206

    Google Scholar 

  • DeVolder PS, Brown SL, Hesterberg D, Pandya K (2003) Metal bioavailability and speciation in a wetland tailings repository amended with biosolids compost, wood ash, and sulfate. J Environ Qual 32(3):851–864

    Article  CAS  PubMed  Google Scholar 

  • Diels L, Geets J, Dejonghe W, Van RS, Vanbroekhoven K, Szewczyk A, Malina G (2006) Heavy metal immobilization in groundwater by in situ bioprecipitation: comments and questions about efficiency and sustainability of the process. Proc Annu Int Conf Soils Sedi Water Energy 11:100–112

    Google Scholar 

  • Doran JW, Zeiss MR (2000) Soil health and sustainability: managing the biotic component of soil quality. Appl Soil Ecol 15:3–11

    Article  Google Scholar 

  • Downs CA, Dillon RT, Fauth JE, Woodley CM (2001) A molecular biomarker system for assessing the health of gastropods (Ilyanassa obsoleta) exposed to natural and anthropogenic stressors. J Exp Mar Biol Ecol 259:189–214

    Article  CAS  PubMed  Google Scholar 

  • Dua M, Singh A, Sethunathan N, Johri A (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59(2–3):143–152

    CAS  PubMed  Google Scholar 

  • Eaton DL, Bammler TK (1999) Concise review of the glutathione S-transferases and their significance to toxicology. Toxicol Sci 49:156–164

    Article  CAS  PubMed  Google Scholar 

  • Ekschmitt K, Korthals GW (2006) Nematodes as sentinels of heavy metals and organic toxicants in the soil. J Nematol 38(1):13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farwell AJ, Vesely S, Nero V, Rodriguez H, Shah S, Dixon DG, Glick BR (2006) The use of transgenic canola (Brassica napus) and plant growth-promoting bacteria to enhance plant biomass at a nickel-contaminated field site. Plant Soil 288(1–2):309–318

    Article  CAS  Google Scholar 

  • Ferris HRC, Venette HR, van der Meulen SS, Lau, (1998) Nitrogen mineralization by bacterial-feeding nematodes: verification and measurement. Plant Soil 203:159–171

    Article  CAS  Google Scholar 

  • Freckman DW, Ettema CH (1993) Assessing nematode communities in agroecosystems of varying human intervention. Agr Ecosyst Environ 45:239–261

    Article  Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112

    Article  CAS  PubMed  Google Scholar 

  • Fritsche W, Hofrichter M (2000) Aerobic degradation by microorganisms. John Wiley & Sons, Biotechnology New York

    Book  Google Scholar 

  • Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122(2–4):109–119

    Article  CAS  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28(3):367–374

    Article  CAS  PubMed  Google Scholar 

  • Gupta VVSR, Yeates GW (1997) Soil microfauna as bioindicators of soil health. In: Pankhurst C, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CAB International, New York, pp 201–233

    Google Scholar 

  • Haitzer M, Lohmannsroben HG, Steinberg CEW, Zimmermann U (2000) In vivo laser-induced fluorescence detection of pyrene in nematodes and determination of pyrene binding constants for humic substances by fluorescence quenching and bioconcentration experiments. J Environ Monit 2:145–149

    Article  CAS  PubMed  Google Scholar 

  • Hassan W, Bano R, Bashir F, David J (2014) Comparative effectiveness of ACC-deaminase and/or nitrogen-fixing rhizobacteria in promotion of maize (Zea mays L.) growth under lead pollution. Environ Sci Pollut Res 21(18):10983–10996

    Google Scholar 

  • Ingham ER (2000) Soil nematodes. In: Tugel AJ, Lewandowski AM, Happe-vonArb D (eds), Soil biology primer. Soil and water conservation society, Ankeny, IA

    Google Scholar 

  • Islam FS, Pederick RL, Gault AG, Adams LK, Polya DA, Charnock JM, Lloyd JR (2005) Interactions between the Fe (III)-reducing bacterium Geobacter sulfurreducens and arsenate, and capture of the metalloid by biogenic Fe (II). Appl Environ Microbiol 71(12):8642–8864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones D, Candido EPM (1999) Feeding is inhibited by sublethal concentrations of toxicants and by heat stress in the nematode Caenorhabditis elegans: relationship to the cellular stress response. J Exp Zool 284:147–157

    Article  CAS  PubMed  Google Scholar 

  • Joutey NT, Bahafid W, Sayel H, El Ghachtouli N (2013) Biodegradation: involved microorganisms and genetically engineered microorganisms. Biodegrad Life Sci 1:289–320

    Google Scholar 

  • Khan S, Zheng YM, Haung ZY, Zhy YG (2008) Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ Pollut 152(3):332–338

    Article  CAS  Google Scholar 

  • Klaassen CD, Liu J, Choudhrui S (1999) Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol 39:267–294

    Article  CAS  PubMed  Google Scholar 

  • Lasat MM (2000) Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J Hazard Substanc Res 2:1–25

    Google Scholar 

  • Lee K, Bosch J, Meckenstock RU (2012a) Use of metal-reducing bacteria for bioremediation of soil contaminated with mixed organic and inorganic pollutants. Environ Geochem Health 34(1):135–142

    Article  CAS  PubMed  Google Scholar 

  • Lee KY, Bosch J, Meckenstock RU (2012b) Use of metal-reducing bacteria for bioremediation of soil contaminated with mixed organic and inorganic pollutants. Environ Geochem Health 34(1):135–142

    Article  CAS  PubMed  Google Scholar 

  • Li X, Li H, Qu C (2019) A review of the mechanism of microbial degradation of petroleum pollution. In: IOP conference series: materials science and engineering, vol. 484(1). IOP Publishing, p 012060

    Google Scholar 

  • Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manage 174:14–25

    Article  CAS  PubMed  Google Scholar 

  • Malik A (2004) Metal bioremediation through growing cells. Environ Int 30(2):261–278

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin MJ, Hamon RE, McLaren TW, Rogers SL (2000) Review: a bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. J Soil Res 38(6):1037–1086

    Article  CAS  Google Scholar 

  • McSorley R (1997) Featured creatures. Retrieved December 19, 2021, from http://entnemdept.ufl.edu/creatures/nematode/soil_nematode.htm

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37(5):634–663

    Google Scholar 

  • Menzel R, Bogaert T, Achazi R (2001) A systematic gene expression screen of Caenorhabditis elegans cytochrome P450 genes reveals CYP35 as strongly xenobiotic inducible. Arch Biochem Biophys 395:158–168

    Article  CAS  PubMed  Google Scholar 

  • Mishra RK, Mohammad N, Roychoudhury N (2015) Soil pollution: causes, effects and control. Trop for Res Inst 3(1):20–30

    Google Scholar 

  • Moore JC, de Ruiter PC (1991) Temporal and spatial heterogeneity of trophic interactions within below-ground food webs. Agr Ecosyst Environ 34:371–397

    Article  Google Scholar 

  • Morand S, Bouamer S, Hugot JP (2006) Nematodes. In: Micromammals and macroparasites. Springer, Tokyo, pp 63–79

    Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Asghar HN, Arshad M (2010) Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat. Soil Sci Soc Am J 74(2):533–542

    Article  CAS  Google Scholar 

  • Naik MG, Duraphe MD (2012) Review paper on-parameters affecting bioremediation. Int J Life Sci Biotechnol Pharma Res 2(3):L77–L80

    Google Scholar 

  • Nanda M, Kumar V, Sharma DK (2019) Multimetal tolerance mechanisms in bacteria: the resistance strategies acquired by bacteria that can be exploited to ‘clean-up’ heavy metal contaminants from water. Aquat Toxicol 212:1–10

    Article  CAS  PubMed  Google Scholar 

  • Neher DA (2001) Role of nematodes in soil health and their use as indicators. J Nematol 33(4):161

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14(12):1504

    Article  PubMed Central  CAS  Google Scholar 

  • Pandey S, Ghosh PK, Ghosh S, De TK, Maiti TK (2013) Role of heavy metal resistant Ochrobactrum sp. and Bacillsus spp. strains in bioremediation of a rice cultivar and their PGPR like activities. J Microbiol 51(1):11–17

    Google Scholar 

  • Petrić I, Hršak D, Fingler S, Vončina E, Ćetković H, Begonja Kolar A, Udiković Kolić N (2007) Enrichment and characterization of PCB-degrading bacteria as potential seed cultures for bioremediation of contaminated soil. Food Technol Biotechnol 45(1):11–20

    Google Scholar 

  • Poole RK, Gadd GM (1989) Metals-microbe interactions. RIL Press, Oxford, pp 1–37

    Google Scholar 

  • Safiyanu I, Isah AA, Abubakar US, Rita Singh M (2015) Review on comparative study on bioremediation for oil spills using microbes. Res J Pharm Biol Chem Sci 6:783–790

    CAS  Google Scholar 

  • Sambongi Y, Nagae T, Liu Y, Yoshimizu T, Takeda K, Wada Y, Futai M (1999) Sensing of cadmium and copper ions by externally exposed ADL, ASE, and ASH neurons elicits avoidance response in Caenorhabditis elegans. NeuroReport 10:753–757

    Article  CAS  PubMed  Google Scholar 

  • Scragg A (2006) Environmental biotechnology, 2nd edn. Oxford University Press, Oxford, UK

    Google Scholar 

  • Seastedt TR (1984) The role of microarthropods in decomposition and mineralization processes. Annu Rev Entomol 29:25–46

    Article  Google Scholar 

  • Seastedt TR, James SW, Todd TC (1988) Interactions among soil invertebrates, microbes, and plant growth in the tallgrass prairie. Agr Ecosyst Environ 24:219–228

    Article  Google Scholar 

  • Shah MM, Mahamood M (2017) Introductory chapter: nematodes–a lesser known group of organisms. Nematol Concepts Diagn Control

    Google Scholar 

  • Shen Z, Li X, Wang C, Chen H, Chua H (2002) Lead phytoextraction from contaminated soil with high-biomass plant species. J Environ Qual 31(6):1893–1900

    Article  CAS  PubMed  Google Scholar 

  • Sheng XF, Xia JJ, Jiang CY, He LY, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156(3):1164–1170

    Article  CAS  PubMed  Google Scholar 

  • Sies H (1999) Glutathione and its role in cellular functions. Free Radical Biol Med 27:916–921

    Article  CAS  Google Scholar 

  • Sohlenius et al., 1988 Sohlenius B, Boström S, Sandor A (1988) Carbon and nitrogen budgets of nematodes in arable soil. Biol Fertil Soils 6(1):8

    Google Scholar 

  • Srivastava M, Srivastava A, Yadav A, Rawat V (2019) Source and control of hydrocarbon pollution. In: Hydrocarbon pollution and its effect on the environment. IntechOpen

    Google Scholar 

  • Stroud JL, Paton GI, Semple KT (2007) Microbe-aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation. J Appl Microbiol 102(5):1239–1253

    Article  CAS  PubMed  Google Scholar 

  • Sturhan D (1986) Influence of heavy metals and other elements on soil nematodes. Revue De Nématol 9:311

    Google Scholar 

  • Tongarun R, Luepromchai E, Vangnai AS (2008) Natural attenuation, biostimulation, and bioaugmentation in 4-chloroaniline-contaminated soil. Curr Microbiol 56(2):182–188

    Article  CAS  PubMed  Google Scholar 

  • Trofymow JA, Coleman DC (1982) The role of bacterivorous and fungivorous nematodes in cellulose and chitin decomposition. In: Freckman DW (ed) Nematodes in soil ecosystems. University of Texas, Austin, TX, pp 117–138

    Chapter  Google Scholar 

  • Truskewycz A, Gundry TD, Khudur LS, Kolobaric A, Taha M, Aburto-Medina A, Ball AS, Shahsavari E (2019) Petroleum hydrocarbon contamination in terrestrial ecosystems—fate and microbial responses. Molecules 24(18):3400

    Article  CAS  PubMed Central  Google Scholar 

  • Ugarte C, Zaborski E (2020) Soil nematodes in organic farming systems. Retrieved December 19, 2020, from https://eorganic.org/node/4495

  • Ullah A, Mushtaq H, Ali H, Munis MFH, Javed MT, Chaudhary HJ (2015) Diazotrophs-assisted phytoremediation of heavy metals: a novel approach. Environ Sci Pollut Res 22(4):2505–2514

    Article  CAS  Google Scholar 

  • USEPA (1999) Use of monitored natural attenuation at superfund, RCRA corrective action and underground storage tank sites. In: OSWER Directive Number 9200.4–17P. Office of Solid Waste and Emergency Response, Washington, DC

    Google Scholar 

  • USEPA (2000) Innovative remediation technologies: field scale demonstration projects in North America, 2nd edn. EPA 542-B-00–004

    Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67(4):503–549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vatamaniuk OK, Bucher EE, Ward JT, Rea PA (2001) Worms take the ‘phyto’ out of “phytochelatins”. Trends Biotechnol 20:61–64

    Google Scholar 

  • Vidali M (2001) Bioremediation an overview. Pure Appl Chem 73(7):1163–1172

    Article  CAS  Google Scholar 

  • Vijver MG, Van Gestel CAM, Lanno RP, Van Straalen NM, Peijnenburg WJGM (2004) Internal metal sequestration and its ecotoxicological relevance: a review. Environ Sci Technol 38:4705–4712

    Article  CAS  PubMed  Google Scholar 

  • Villenave C, Bongers T, Ekschmitt K, Djigal D, Chotte JL (2001) Changes in nematode communities following cultivation of soils after fallow periods of different length. Appl Soil Ecol 17:43–52

    Article  Google Scholar 

  • Vivas A, Biro B, Ruiz-Lozano JM, Barea JM, Azcon R (2006) Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Chemosphere 62(9):1523–1533

    Article  CAS  PubMed  Google Scholar 

  • Vogel TM (1996) Bioaugmentation as a soil bioremediation approach. Curr Opin Biotechnol 7(3):311–316

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Hooks C (2011) Chapter 4: Managing soil health and soil health bioindicators through the use of cover crops and other sustainable practices. In: Brust GE (ed) MD organic vegetable growers

    Google Scholar 

  • Wasilewska L (1997) Soil invertebrates as bioindicators, with special reference to soil-inhabiting nematodes. Russ J Nematol 5(2):113–126

    Google Scholar 

  • Wasilewska LH, Jakubczyk PE (1975) Production of Aphelenchus avenae Bastian (Nematoda) and reduction of mycelium of saprophytic fungi by them. Polish Ecol Stud 1:61–73

    Google Scholar 

  • Whitford WGDW, Freckman PF, Santos NZ, Elkins, LW Parker (1982) The role of nematodes in decomposition in desert ecosystems. In: Freckman DW (ed) Nematodes in soil ecosystems. University of Texas, Austin, TX, pp 98–115

    Google Scholar 

  • Williams MSR, Seraphin S (1998) Heavy metal biominer-alization in free-living nematodes, Panagrolaimus spp. Mater Sci Eng C-Biomimetic Mater Sensors Syst 6:47–51

    Article  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Int Sch Res Not 2011:1–20

    Article  Google Scholar 

  • Yeates GW, Bird AF (1994a) Some observations on the influence of agricultural practices on the nematode faunae of some South Australian soils. Fundam Appl Nematol 17(2):133–145

    Google Scholar 

  • Yeates GW, Bird AF (1994b) Some observations on the influence of agricultural practices on the nematode faunae of some South Australian soils. Fund Appl Nematol 17:133–145

    Google Scholar 

  • Yeates GW, Coleman DC (1982) Nematodes in decomposition. In: Freckman DW (ed) Nematodes in soil ecosystems. University of Texas, Austin, TX, pp 55–80

    Chapter  Google Scholar 

  • Yeates GW, Bongers RGM, de Goede DW, Freckman SSG (1993) Feeding habits in soil nematode families and genera—an outline for soil ecologists. J Nematol 25:315–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang MK, Liu ZY, Wang H (2010) Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Commun Soil Sci Plant Anal 41(7):820–831

    Article  CAS  Google Scholar 

  • Zhang B, Zhang L, Zhang X (2019) Bioremediation of petroleum hydrocarbon-contaminated soil by petroleum-degrading bacteria immobilized on biochar. RSC Adv 9(60):35304–35311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunjan Khandelwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khandelwal, G., Chaudhary, V., Iyer, R., Dwivedi, A. (2022). Soil Bacteria and Nematodes for Bioremediation and Amelioration of Polluted Soil. In: Malik, J.A. (eds) Microbial and Biotechnological Interventions in Bioremediation and Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-031-08830-8_3

Download citation

Publish with us

Policies and ethics