Skip to main content

Getting Formal Ontologies Closer to Final Users Through Knowledge Graph Visualization: Interpretation and Misinterpretation

  • Conference paper
  • First Online:
Computational Science – ICCS 2022 (ICCS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13353))

Included in the following conference series:

  • 1186 Accesses

Abstract

Knowledge Graphs are extensively adopted in a variety of disciplines to support knowledge integration, visualization, unification, analysis and sharing at different levels. On the other side, Ontology has gained a significant popularity within machine-processable environments, where it is extensively used to formally define knowledge structures. Additionally, the progressive development of the Semantic Web has further contributed to a consolidation at a conceptual level and to the consequent standardisation of languages as part of the Web technology. This work focuses on customizable visualization/interaction, looking at Knowledge Graphs resulting from formal ontologies. While the proposed approach in itself is considered to be scalable via customization, the current implementation of the research prototype assumes detailed visualizations for relatively small data sets with a progressive detail decreasing when the amount of information increases. Finally, issues related to possible misinterpretations of ontology-based knowledge graphs from a final user perspective are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W3C - OWL 2 Web Ontology Language Document Overview (Second Edition). https://www.w3.org/TR/owl2-overview/. Accessed 18 Sept 2020

  2. W3C - SPARQL 1.1 Overview. https://www.w3.org/TR/sparql11-overview/. Accessed 18 Sept 2020

  3. Bach, B., Pietriga, E., Liccardi, I., Legostaev, G.: OntoTrix: a hybrid visualization for populated ontologies. In: Proceedings of the 20th International Conference Companion on World Wide Web, pp. 177–180 (2011)

    Google Scholar 

  4. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 34–43 (2001)

    Article  Google Scholar 

  5. Chen, H., Luo, X.: An automatic literature knowledge graph and reasoning network modeling framework based on ontology and natural language processing. Adv. Eng. Inform. 42, 100959 (2019)

    Article  Google Scholar 

  6. Chen, P., Lu, Y., Zheng, V.W., Chen, X., Yang, B.: KnowEdu: a system to construct knowledge graph for education. IEEE Access 6, 31553–31563 (2018)

    Article  Google Scholar 

  7. Chen, X., Jia, S., Xiang, Y.: A review: knowledge reasoning over knowledge graph. Expert Syst. Appl. 141, 112948 (2020)

    Article  Google Scholar 

  8. Fang, W., Ma, L., Love, P.E., Luo, H., Ding, L., Zhou, A.: Knowledge graph for identifying hazards on construction sites: integrating computer vision with ontology. Autom. Constr. 119, 103310 (2020)

    Article  Google Scholar 

  9. Fensel, D., et al.: Introduction: what is a knowledge graph? In: Knowledge Graphs, pp. 1–10. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37439-6_1

    Chapter  Google Scholar 

  10. Gangemi, A., Catenacci, C., Ciaramita, M., Lehmann, J.: Modelling ontology evaluation and validation. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 140–154. Springer, Heidelberg (2006). https://doi.org/10.1007/11762256_13

    Chapter  Google Scholar 

  11. Gennari, J.H., et al.: The evolution of protégé: an environment for knowledge-based systems development. Int. J. Hum. Comput. Stud. 58(1), 89–123 (2003)

    Article  MathSciNet  Google Scholar 

  12. Ghorbel, F., Ellouze, N., Métais, E., Hamdi, F., Gargouri, F., Herradi, N.: Memo graph: an ontology visualization tool for everyone. Procedia Comput. Sci. 96, 265–274 (2016)

    Article  Google Scholar 

  13. Glazer, N.: Challenges with graph interpretation: a review of the literature. Stud. Sci. Educ. 47(2), 183–210 (2011)

    Article  Google Scholar 

  14. Guarino, N.: Formal ontology, conceptual analysis and knowledge representation. Int. J. Hum. Comput. Stud. 43(5–6), 625–640 (1995)

    Article  Google Scholar 

  15. Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., Giannopoulou, E.: Ontology visualization methods - a survey. ACM Comput. Surv. (CSUR) 39(4), 10 (2007)

    Article  Google Scholar 

  16. Lanzenberger, M., Sampson, J., Rester, M.: Visualization in ontology tools. In: International Conference on Complex, Intelligent and Software Intensive Systems, 2009. CISIS 2009, pp. 705–711. IEEE (2009)

    Google Scholar 

  17. Lee, Y., Kozar, K.A., Larsen, K.R.: The technology acceptance model: past, present, and future. Commun. Assoc. Inf. Syst. 12(1), 50 (2003)

    Google Scholar 

  18. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  19. LiuQiao, L., DuanHong, L., et al.: Knowledge graph construction techniques. J. Comput. Res. Dev. 53(3), 582 (2016)

    Google Scholar 

  20. Lohmann, S., Negru, S., Haag, F., Ertl, T.: Visualizing ontologies with VOWL. Semant. Web 7(4), 399–419 (2016)

    Article  Google Scholar 

  21. Marangunić, N., Granić, A.: Technology acceptance model: a literature review from 1986 to 2013. Univers. Access Inf. Soc. 14(1), 81–95 (2015)

    Article  Google Scholar 

  22. McBride, B.: The resource description framework (RDF) and its vocabulary description language RDFS. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. International Handbooks on Information Systems, pp. 51–65. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24750-0_3

  23. Noy, N., Gao, Y., Jain, A., Narayanan, A., Patterson, A., Taylor, J.: Industry-scale knowledge graphs: lessons and challenges: five diverse technology companies show how it’s done. Queue 17(2), 48–75 (2019)

    Article  Google Scholar 

  24. Paulheim, H.: Knowledge graph refinement: a survey of approaches and evaluation methods. Semant. Web 8(3), 489–508 (2017)

    Article  Google Scholar 

  25. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. In: Cruz, I., et al. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 30–43. Springer, Heidelberg (2006). https://doi.org/10.1007/11926078_3

    Chapter  Google Scholar 

  26. Pileggi, S.F.: A novel domain ontology for sensor networks. In: 2010 Second International Conference on Computational Intelligence, Modelling and Simulation, pp. 443–447. IEEE (2010)

    Google Scholar 

  27. Pileggi, S.F.: Probabilistic semantics. Procedia Comput. Sci. 80, 1834–1845 (2016)

    Article  Google Scholar 

  28. Pileggi, S.F., Indorf, M., Nagi, A., Kersten, W.: CoRiMaS-an ontological approach to cooperative risk management in seaports. Sustainability 12(11), 4767 (2020)

    Article  Google Scholar 

  29. Pileggi, S.F., Crain, H., Yahia, S.B.: An ontological approach to knowledge building by data integration. In: Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12143, pp. 479–493. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50436-6_35

    Chapter  Google Scholar 

  30. Pileggi, S.F., Lamia, S.A.: Climate change timeline: an ontology to tell the story so far. IEEE Access 8, 65294–65312 (2020)

    Article  Google Scholar 

  31. Pujara, J., Miao, H., Getoor, L., Cohen, W.: Knowledge graph identification. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 542–557. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41335-3_34

    Chapter  Google Scholar 

  32. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: PELLET: a practical OWL-DL reasoner. Web Semant. Sci. Serv. Agents World Wide Web 5(2), 51–53 (2007)

    Article  Google Scholar 

  33. Sivakumar, R., Arivoli, P.: Ontology visualization protégé tools-a review. Int. J. Adv. Inf. Technol. (IJAIT) 1 (2011)

    Google Scholar 

  34. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

    Article  Google Scholar 

  35. Wang, X., He, X., Cao, Y., Liu, M., Chua, T.S.: KGAT: knowledge graph attention network for recommendation. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 950–958 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Flavio Pileggi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pileggi, S.F. (2022). Getting Formal Ontologies Closer to Final Users Through Knowledge Graph Visualization: Interpretation and Misinterpretation. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13353. Springer, Cham. https://doi.org/10.1007/978-3-031-08760-8_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08760-8_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08759-2

  • Online ISBN: 978-3-031-08760-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics