Skip to main content

Characterization of Foam-Assisted Water-Gas Flow via Inverse Uncertainty Quantification Techniques

  • Conference paper
  • First Online:
Computational Science – ICCS 2022 (ICCS 2022)

Abstract

In enhanced oil recovery (EOR) processes, foam injection reduces gas mobility and increases apparent viscosity, thus increasing recovery efficiency. The quantification of uncertainty is essential in developing and evaluating mathematical models. In this work, we perform uncertainty quantification (UQ) of two-phase flow models for foam injection using the STARS model with data from a series of foam quality-scan experiments. We first performed the parameter estimation based on three datasets of foam quality-scans on Indiana limestone carbonate core samples. Then distributions of the parameters are inferred via the Markov Chain Monte Carlo method (MCMC). This approach allows propagating parametric uncertainty to the STARS apparent viscosity model. In particular, the framework for UQ allowed us to identify how the lack of experimental data affected the reliability of the calibrated models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashoori, E., Marchesin, D., Rossen, W.: Roles of transient and local equilibrium foam behavior in porous media-traveling wave. In: ECMOR XII-12th European Conference on the Mathematics of Oil Recovery, p. 163. European Association of Geoscientists and Engineers (2010)

    Google Scholar 

  2. Berg, S., Unsal, E., Dijk, H.: Non-uniqueness and uncertainty quantification of relative permeability measurements by inverse modelling. Comput. Geotech. 132, 103964 (2021)

    Article  Google Scholar 

  3. Boeije, C., Rossen, W.: Fitting foam simulation model parameters to data. In: IOR 2013–17th European Symposium on Improved Oil Recovery, p. 342. European Association of Geoscientists and Engineers (2013)

    Google Scholar 

  4. Brooks, S.: Markov chain Monte Carlo method and its application. J. R. Stat. Soc. Ser. D (Stat.) 47(1), 69–100 (1998)

    Article  Google Scholar 

  5. Chen, Y., et al.: Switchable nonionic to cationic ethoxylated amine surfactants for CO\(_2\) enhanced oil recovery in high-temperature, high-salinity carbonate reservoirs. SPE J. 19(02), 249–259 (2014)

    Article  Google Scholar 

  6. (CMG): Stars users manual; version 2019.10 (2019)

    Google Scholar 

  7. Facanha, J.M.F., Souza, A.V.O., Gramatges, A.P.: Comportamento de espumas em rochas carbonáticas análogas: comparação com curvas de traçador e efeito da permeabilidade. In: Rio Oil and Gas Expo and Conference. Brazilian Petroleum, Gas and Biofuels Institute - IBP (2020). https://doi.org/10.48072/2525-7579.rog.2020.039

  8. Farajzadeh, R., Lotfollahi, M., Eftekhari, A.A., Rossen, W.R., Hirasaki, G.J.H.: Effect of permeability on implicit-texture foam model parameters and the limiting capillary pressure. Energy Fuels 29(5), 3011–3018 (2015)

    Article  Google Scholar 

  9. Herman, J., Usher, W.: SALib: an open-source python library for sensitivity analysis. J. Open Source Softw. 2(9), 97 (2017). https://doi.org/10.21105/joss.00097

  10. Kam, S.I.: Improved mechanistic foam simulation with foam catastrophe theory. Colloids Surf. A Physicochemical Eng. Aspects 318(1–3), 62–77 (2008)

    Article  Google Scholar 

  11. Lotfollahi, M., Farajzadeh, R., Delshad, M., Varavei, A., Rossen, W.R.: Comparison of implicit-texture and population-balance foam models. J. Nat. Gas Sci. Eng. 31, 184–197 (2016)

    Article  Google Scholar 

  12. Ma, K., Lopez-Salinas, J.L., Puerto, M.C., Miller, C.A., Biswal, S.L., Hirasaki, G.J.: Estimation of parameters for the simulation of foam flow through porous media. Part 1: the dry-out effect. Energy Fuels 27(5), 2363–2375 (2013)

    Article  Google Scholar 

  13. Mohamed, I., Nasr-El-Din, H., et al.: Formation damage due to CO\(_2\) sequestration in deep saline carbonate aquifers. In: SPE International Symposium and Exhibition on Formation Damage Control. Society of Petroleum Engineers (2012)

    Google Scholar 

  14. Newville, M., Stensitzki, T., Allen, D.B., Rawlik, M., Ingargiola, A., Nelson, A.: LMFIT: non-linear least-square minimization and curve-fitting for python. In: Astrophysics Source Code Library, p. ascl-1606 (2016)

    Google Scholar 

  15. Salvatier, J., Wiecki, T.V., Fonnesbeck, C.: Probabilistic programming in python using PyMC3. PeerJ Comput. Sci. 2, e55 (2016)

    Article  Google Scholar 

  16. Valdez, A.R., et al.: Foam-assisted water-gas flow parameters: from core-flood experiment to uncertainty quantification and sensitivity analysis. Transp. Porous Media 1–21 (2021). https://doi.org/10.1007/s11242-021-01550-0

  17. Valdez, A.R., Rocha, B.M., Chapiro, G., dos Santos, R.W.: Uncertainty quantification and sensitivity analysis for relative permeability models of two-phase flow in porous media. J. Pet. Sci. Eng. 192, 107297 (2020)

    Article  Google Scholar 

  18. Zeng, Y., et al.: Insights on foam transport from a texture-implicit local-equilibrium model with an improved parameter estimation algorithm. Ind. Eng. Chem. Res. 55(28), 7819–7829 (2016)

    Article  Google Scholar 

  19. Zitha, P., Du, D.: A new stochastic bubble population model for foam flow in porous media. Transp. Porous Media 83(3), 603–621 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Ivan Landin for suggestions on improving the manuscript.

This research was carried out in association with the ongoing R&D projects ANP number 20358-8, “Desenvolvimento de formulações contendo surfactantes e nanopartículas para controle de mobilidade de gás usando espumas para recuperação avançada de petróleo” (PUC-Rio/Shell Brasil/ANP) and ANP number 201715-9, “Modelagem matemática e computacional de injeção de espuma usa em recuperação de petróleo” (UFJF/Shell Brazil/ANP) sponsored by Shell Brasil under the ANP R&D levy as “Compromisso de Investimentos com Pesquisa e Desenvolvimento”, in partnership with Petrobras.

G.C. was supported in part by CNPq grant 303245/2019-0 and FAPEMIG grant APQ-00405-21. B. M. R. was supported in part by CNPq grant 310722/2021-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Weber dos Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Miranda, G.B. et al. (2022). Characterization of Foam-Assisted Water-Gas Flow via Inverse Uncertainty Quantification Techniques. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13353. Springer, Cham. https://doi.org/10.1007/978-3-031-08760-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08760-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08759-2

  • Online ISBN: 978-3-031-08760-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics