Skip to main content

Quantum Variational Multi-class Classifier for the Iris Data Set

  • Conference paper
  • First Online:
Computational Science – ICCS 2022 (ICCS 2022)

Abstract

Recent advances in machine learning on quantum computers have been made possible mainly by two discoveries. Mapping the features into exponentially large Hilbert spaces makes them linearly separable—quantum circuits perform linear operations only. The parameter-shift rule allows for easy computation of objective function gradients on quantum hardware—a classical optimizer can then be used to find its minimum. This allows us to build a binary variational quantum classifier that shows some advantages over the classical one. In this paper we extend this idea to building a multi-class classifier and apply it to real data. A systematic study involving several feature maps and classical optimizers as well as different repetitions of the parametrized circuits is presented. The accuracy of the model is compared both on a simulated environment and on a real IBM quantum computer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://research.ibm.com/blog/127-qubit-quantum-processor-eagle.

  2. 2.

    https://quantum-computing.ibm.com/services?services=systems.

  3. 3.

    https://github.com/odisei369/quantum_learning_iris.

References

  1. Abbas, A., Sutter, D., Zoufal, C., Lucchi, A., Figalli, A., Woerner, S.: The power of quantum neural networks. Nat. Comput. Sci. 1(6), 403–409 (2021). https://doi.org/10.1038/s43588-021-00084-1

    Article  Google Scholar 

  2. Alam, M., Ash-Saki, A., Ghosh, S.: Analysis of quantum approximate optimization algorithm under realistic noise in superconducting qubits. arXiv preprint arXiv:1907.09631 (2019)

  3. Anderson, E.: The species problem in iris. Ann. Mo. Bot. Gard. 23(3), 457–509 (1936)

    Article  Google Scholar 

  4. Chalumuri, A., Kune, R., Manoj, B.S.: A hybrid classical-quantum approach for multi-class classification. Quantum Inf. Process. 20(3), 1–19 (2021). https://doi.org/10.1007/s11128-021-03029-9

    Article  MathSciNet  Google Scholar 

  5. Córcoles, A.D., et al.: Challenges and opportunities of near-term quantum computing systems. arXiv preprint arXiv:1910.02894 (2019)

  6. Dattani, N., Chancellor, N.: Embedding quadratization gadgets on Chimera and Pegasus graphs. arXiv preprint arXiv:1901.07676 (2019)

  7. Dattani, N., Szalay, S., Chancellor, N.: Pegasus: the second connectivity graph for large-scale quantum annealing hardware. arXiv preprint arXiv:1901.07636 (2019)

  8. Dunjko, V., Taylor, J.M., Briegel, H.J.: Quantum-enhanced machine learning. Phys. Rev. Lett. 117(13), 130501 (2016)

    Article  MathSciNet  Google Scholar 

  9. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014)

  10. Fingerhuth, M., Babej, T., Wittek, P.: Open source software in quantum computing. PLoS ONE 13(12), e0208561 (2018)

    Article  Google Scholar 

  11. Gacon, J., Zoufal, C., Carleo, G., Woerner, S.: Simultaneous perturbation stochastic approximation of the quantum fisher information. Quantum 5, 567 (2021)

    Article  Google Scholar 

  12. Havlíček, V., et al.: Supervised learning with quantum-enhanced feature spaces. Nature 567(7747), 209–212 (2019)

    Article  Google Scholar 

  13. Hubregtsen, T., Pichlmeier, J., Bertels, K.: Evaluation of parameterized quantum circuits: on the design, and the relation between classification accuracy, expressibility and entangling capability. arXiv preprint arXiv:2003.09887 (2020)

  14. Kandala, A., et al.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549(7671), 242–246 (2017)

    Article  Google Scholar 

  15. Kraft, D., et al.: A software package for sequential quadratic programming (1988)

    Google Scholar 

  16. Kuo, E.J., Fang, Y.L.L., Chen, S.Y.C.: Quantum architecture search via deep reinforcement learning. arXiv preprint arXiv:2104.07715 (2021)

  17. Lee, C.M., Selby, J.H.: Generalised phase kick-back: the structure of computational algorithms from physical principles. New J. Phys. 18(3), 033023 (2016)

    Article  Google Scholar 

  18. Li, H., Xu, Z., Taylor, G., Studer, C., Goldstein, T.: Visualizing the loss landscape of neural nets. In: Advances in Neural Information Processing Systems 31 (2018)

    Google Scholar 

  19. Linke, N.M., et al.: Experimental comparison of two quantum computing architectures. Proc. Natl. Acad. Sci. 114(13), 3305–3310 (2017)

    Article  Google Scholar 

  20. McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nat. Commun. 9(1), 1–6 (2018)

    Article  Google Scholar 

  21. Peruzzo, A., et al.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5(1), 1–7 (2014)

    Article  Google Scholar 

  22. Qin, Z., Kim, D., Gedeon, T.: Rethinking softmax with cross-entropy: neural network classifier as mutual information estimator. arXiv preprint arXiv:1911.10688 (2019)

  23. Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms and comparison of software implementations. J. Glob. Optim. 56(3), 1247–1293 (2013)

    Article  MathSciNet  Google Scholar 

  24. Salman, S., Liu, X.: Overfitting mechanism and avoidance in deep neural networks. arXiv preprint arXiv:1901.06566 (2019)

  25. Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Phys. Rev. A 99(3), 032331 (2019)

    Article  Google Scholar 

  26. Schuld, M., Petruccione, F.: Supervised Learning with Quantum Computers. QST, Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96424-9

    Book  MATH  Google Scholar 

  27. Shor, P.W.: Fault-tolerant quantum computation. In: Proceedings of 37th Conference on Foundations of Computer Science, pp. 56–65. IEEE (1996)

    Google Scholar 

  28. Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Adv. Quant. Technol. 2(12), 1900070 (2019)

    Article  Google Scholar 

  29. Stokes, J., Izaac, J., Killoran, N., Carleo, G.: Quantum natural gradient. Quantum 4, 269 (2020)

    Article  Google Scholar 

  30. Wang, Y.E., Wei, G.Y., Brooks, D.: Benchmarking TPU, GPU, and CPU platforms for deep learning. arXiv preprint arXiv:1907.10701 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Rusek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Piatrenka, I., Rusek, M. (2022). Quantum Variational Multi-class Classifier for the Iris Data Set. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13353. Springer, Cham. https://doi.org/10.1007/978-3-031-08760-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08760-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08759-2

  • Online ISBN: 978-3-031-08760-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics