Skip to main content

Rózsa Péter on the Philosophy and Foundations of Mathematics: A Reappraisal

  • Chapter
  • First Online:
Women in the History of Analytic Philosophy

Part of the book series: Women in the History of Philosophy and Sciences ((WHPS,volume 15))

  • 251 Accesses

Rózsa Péter 1905–1977

Biography

The Hungarian mathematician and logician Rózsa Péter (1905–1977) is best known as a founder of recursion theory. Her works broke new ground and helped to establish recursion theory as a separate mathematical discipline.

Born to a Jewish family in Budapest on 17 February 1905, she attended Maria Terezia Girls’ School and studied at Pázmány Péter University (renamed Loránd Eötvös University in 1950) in Budapest. After her graduation in 1927, Péter was unable to find a permanent position, so she took jobs tutoring students privately and teaching in high schools.

László Kalmár, who was a fellow student at Pázmány Péter University at that time, called her attention to the subject of incompleteness theorems published by Kurt Gödel in 1931. In 1932, Péter presented her first paper on recursive functions at the International Congress of Mathematicians in Zurich, Switzerland. In 1935, she received her Ph.D. with summa cum laude. In 1937, Péter became a contributing editor of the Journal of Symbolic Logic. Just as her career was beginning to take off, her employment position became worse when the fascist government passed anti-Semitic laws and Jews were no longer allowed to teach. During this difficult period, Péter wrote her popular book Playing with Infinity, which was first published in Hungarian in 1944. Shortly after the war, Péter was granted her first full-time teaching position at the Budapest Teachers Training College. When the college was closed in 1955 she became a professor at Loránd Eötvös University and remained in this post until she retired in 1975. She died on 16 February 1977, at the age of 72.

Péter received many honors and became one of the leading figures who paved the way for the acceptance of mathematical logic in Hungary. She was a passionate teacher of mathematics, who helped to introduce logic as a subject to university curricula. In 1973, she was elected the first female mathematician to become a member of the Hungarian Academy of Sciences.

Selected Bibliography

(1932). Rekursive Funktionen. In: W. Saxer (Ed.). Verhandlungen des Internationalen Mathematiker-Kongresses Zürich, vol. 2 (pp. 336–337). Orell Füssli Verlag.

(1935). Über den Zusammenhang der verschiedenen Begriffe der rekursiven Funktion. Mathematische Annalen, 110, 612–632.

(1935). Konstruktion nichtrekursiver Funktionen. Mathematische Annalen, 111, 42–60.

(1941). Az axiomatikus módszer korlátai (The bounds of the axiomatic method). Matematikai és Fizikai Lapok, 48, 120–143.

(1951). Rekursive Funktionen. Budapest: Akademiai Kiado.

(1961). Playing with Infinity (trad. by Z. P. Dienes). New York: Dover Publications. (Originally published in 1944 as Játék a végtelennel. Budapest: Dante Könyvkiadó.)

(1981). Recursive Functions in Computer Theory. Ellis-Horwood.

Abstract

Stephen Kleene (1909–1994) once praised the Hungarian mathematician and logician Rózsa Péter (1905–1977) as “the leading contributor to the special theory of recursive functions” (Kleene, 1952). Her works broke new ground and helped to establish recursion theory as a mathematical discipline. Today, Kleene is much better known in the philosophy of mathematics than Péter. In this chapter, I provide an overview of Rózsa Péter’s work and describe her active role in communicating these results to a broader audience in her book Playing with Infinity (1944/1961). First, I will briefly summarize the content and key statements of Péter’s book, including an overview of its reception. Second, I will focus on a case study: Péter’s popular sketch of Gödel’s proof. Third, I will contextualize this case study against the historical background of Hilbert’s program and the decision problem. This includes Péter’s research on recursion theory. Last, but not least, I will discuss Church’s thesis and Péter’s interpretation of it. I conclude with some reflections on the relevance of Péter’s work from a philosophical, conceptual and practical perspective.

When I began my college education,

I still had many doubts about

whether I was good enough for mathematics.

Then a colleague said the decisive words to me:

it is not that I am worthy to occupy myself with mathematics,

but rather that mathematics is worthy

for one to occupy oneself with.

Rózsa Péter*

* This is a quote from Péter’s essay “Mathematics is Beautiful” (Péter, 1990, 58). The essay dates back to a lecture delivered to high school teachers and students which Péter held in Rostock, German Democratic Republic, in 1963. The lecture was first published in 1964 in the German journal Mathematik in der Schule. The English translation by Leon Harkleroad appeared in the journal The Mathematical Intelligencer in 1990.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The unpublished letters between Rózsa Péter and Paul Bernays as well as Bernays’s correspondence with the Birkhäuer Verlag Basel regarding a German translation and edition of Péter’s book are preserved in the Paul Bernays Nachlaß at the Eidgenössische Technische Hochschule, ETH Zürich, Archive und Nachlässe, HS 975, 293–403; 3461–3524.

  2. 2.

    Hilbert’s philosophy of mathematics has many faces and facets. Hilbert’s views, along with those of his main students and collaborators, notably Paul Bernays, evolved considerably over a period of some forty years, sometimes in reaction to results within mathematics, and sometimes due to interactions with colleagues, collaborators, and opponents. This is reflected in the plural phrase, Hilbert’s Programs, in the title of Wilfried Sieg’s book Hilbert’s Programs and Beyond (Sieg, 2013).

  3. 3.

    The author’s own translation. To quote the German original: “Diese Ergebnisse widerlegen zwar Hilberts Glauben: “In der Mathematik gibt es kein Ignorabimus”; dass sich aber diese Tatsachen mit den Hilbertschen rein mathematischen Methoden klarlegen liessen, dass man das “Ignorabimus” in der Mathematik mit mathematischen Mitteln streng beweisen kann, ist vielleicht nicht weniger schön, als wenn es in der Mathematik kein “Ignorabimus” gäbe.”

  4. 4.

    The author’s own translation. To quote the German original: “Der Satz von Gödel beweist doch, dass nicht alle Probleme, deren Entscheidbarkeit man erwarten könnte, lösbar sind mit jenen Mitteln die gerade zur Lösung so und so gearteter Probleme zusammengelegt wurden. Das ist doch eine Art “Ignorabimus”, wenn auch nicht zum Verzweifeln da man hoffen kann, dass auf höherer Stufe auch solche Probleme gelöst werden können (das ist auch ein Mangel der Mathematik, dass die Existenz solcher Probleme sich nur an Hand eines solchen Problems herausstellt, welches auf einer höheren Stufe auch wirklich lösbar ist).” Excerpt from Rózsa Péter’s letter to Paul Bernays, Budapest, 27 January 1944). Paul Bernays Nachlaß at the Eidgenössische Technische Hochschule, ETH Zürich, Archive und Nachlässe, Hs_975_3461_3524.27.

  5. 5.

    In his review “On some recent criticism of Church’s Thesis”, Elliot Mendelson objected that Péter confused the meaning and notion of a “constructive proof” with “computable functions” (Mendelson, 1963). Yiannis N. Moschovakis defended Péter from Mendelson’s criticism, pointing out that both the classical and the constructivistic interpretation of the quantifier in the statement of Church’s thesis is admissible (Moschovakis, 1968). For a detailed analysis of Péter's talk “Rekursivität und Konstruktivität” delivered at the Constructivity in Mathematics Colloquium in 1957, where she challenged Church’s Thesis from a constructive point of view, see Szabó (2021).

References

  • Ackermann, W. (1928). Zum Hilbertschen Aufbau der reellen Zahlen. Mathematische Annalen, 99, 118–133.

    Google Scholar 

  • Avigad, J., & Zach, R. (2016). The Epsilon calculus. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Fall 2020 Edition). https://plato.stanford.edu/archives/sum2016/entries/epsilon-calculus/.

  • Bernays, P. (1928). Zusatz zu Hilberts Vortrag über “Die Grundlagen der Mathematik.” Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 6, 88–92.

    Google Scholar 

  • Church, A. (1936a). A note on the Entscheidungsproblem. The Journal of Symbolic Logic, 1(1), 40–41.

    Google Scholar 

  • Church, A. (1936b). Correction to a note on the Entscheidungsproblem. The Journal of Symbolic Logic, 1(3), 101–102.

    Google Scholar 

  • Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik, 38, 173–198.

    Google Scholar 

  • Goodstein, R. L. (1962). Review of “Playing with Infinity”, by Rózsa Péter. The Mathematical Gazette, 46(356), 157.

    Google Scholar 

  • Gosztonyi, K. (2016). Mathematical culture and mathematics education in Hungary in the XXth Century. In B. Larvor (Ed.), Mathematical Cultures: The London Meetings 2012–2014 (pp. 71–89). Springer.

    Google Scholar 

  • Győri, J. G., Fried, K., Köves, G., Oláh, V., & Pálfalvi, J. (2020). The traditions and contemporary characteristics of mathematics education in the post-socialist era. In A. Karp (Ed.), Eastern European Mathematics Education in the Decades of Change (pp. 75–129). Springer.

    Google Scholar 

  • Hilbert, D. (1900). Mathematische Probleme. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 253–297.

    Google Scholar 

  • Hilbert, D. (1918). Axiomatisches Denken. Mathematische Annalen, 78, 405–415.

    Google Scholar 

  • Hilbert, D. (1930). Probleme der Grundlegung der Mathematik. Mathematische Annalen, 102, 1–9.

    Google Scholar 

  • Huber-Dyson, V. (1991). Gödel’s Theorems: A Workbook on Formalization. Teubner.

    Google Scholar 

  • Kalmár, L. (1932). Zum Entscheidungsproblem der mathematischen Logik. In W. Saxer (Ed.), Verhandlungen des Internationalen Mathematiker-Kongresses Zürich 1932. Sektionsvorträge (Vol. 2, pp. 337–338). Orell Füssli Verlag.

    Google Scholar 

  • Kalmár, L. (1941a). A Hilbert-féle bizonyításelmélet célkitűzései, módszerei, eredményei (The aims, methods and results of Hilbertian proof theory). Matematikai es Fizikai Lapok, 48, 65–119.

    Google Scholar 

  • Kalmár, L. (1941b). Review of “Az axiomatikus módszer korlátai (The bounds of the axiomatic method),” by Rózsa Péter. The Journal of Symbolic Logic, 6(3), 110–111.

    Google Scholar 

  • Kalmár, L. (1959). An argument against the plausibility of Church’s Thesis. In A. Heyting (Ed.), Proceedings of the Colloquium Held at Amsterdam, Constructivity in Mathematics (pp. 72–80). North-Holland Publishing Company.

    Google Scholar 

  • Kemeny, J. G. (1948). Review of “Játék a végtelennel. Matematika kivülállóknak (Playing with the Infinite: Mathematics for outsiders),” by Rózsa Péter. The Journal of Symbolic Logic, 13(3), 141–142.

    Google Scholar 

  • Kleene, S. (1952). Review of “Rekursive Funktionen,” by Rózsa Péter. The Bulletin of the American Mathematical Society, 58, 270–272.

    Google Scholar 

  • Kleene, S. C. (1936). General recursive functions of natural numbers. Mathematische Annalen, 112(5), 727–742.

    Google Scholar 

  • Kleene, S. C. (1967). Mathematical Logic. Wiley.

    Google Scholar 

  • Morris, E., & Harkleroad, L. (1990). Rózsa Péter: Recursive function theory’s founding mother. The Mathematical Intelligencer, 12(1), 59–61.

    Google Scholar 

  • Mendelson, E. (1963). On some recent criticism of Church’s thesis. Notre Dame Journal of Formal Logic, 4(3), 201–205.

    Google Scholar 

  • Moschovakis, Y. (1968). Review of four recent papers on Church’s thesis. Journal of Symbolic Logic, 33, 471–472.

    Google Scholar 

  • Neumann, J. (1927). Zur Hilbertschen Beweistheorie. Mathematische Zeitschrift, 26, 1–46.

    Google Scholar 

  • Péter, R. (1935a). Über den Zusammenhang der verschiedenen Begriffe der rekursiven Funktion. Mathematische Annalen, 110, 612–632.

    Google Scholar 

  • Péter, R. (1935b). Konstruktion nichtrekursiver Funktionen. Mathematische Annalen, 111, 42–60.

    Google Scholar 

  • Péter, R. (1937). Über die mehrfache Rekursion. Mathematische Annalen, 113, 489–527.

    Google Scholar 

  • Péter, R. (1941a). Az axiomatikus módszer korlátai (The bounds of the axiomatic method). Matematikai es Fizikai Lapok, 48, 120–143.

    Google Scholar 

  • Péter, R. (1941b). Review of “The aims, methods and results of Hilbertian proof theory,” by László Kalmár. The Journal of Symbolic Logic, 6(3), 110–111.

    Google Scholar 

  • Péter, R. (1944). Játék a végtelennel. Matematika kivülállóknak. Dante Könyvkiadó.

    Google Scholar 

  • Péter, R. (1951). Rekursive Funktionen. Akademischer Verlag Budapest.

    Google Scholar 

  • Peter, R. (1959). Rekursivität und Konstruktivität. In A. Heyting (Ed.), Proceedings of the Colloquium Held at Amsterdam, Constructivity in Mathematics (pp. 226–233). North-Holland Publishing Company.

    Google Scholar 

  • Péter, R. (1961). Playing with Infinity. Dover Publications.

    Google Scholar 

  • Péter, R. (1967). Recursive Functions. Academic Press.

    Google Scholar 

  • Péter, R. (1976). Rekursive Funktionen in der Komputer-Theorie. Akademischer Verlag Budapest.

    Google Scholar 

  • Péter, R. (1981). Recursive Functions in Computer Theory. Ellis-Horwood.

    Google Scholar 

  • Péter, R. (1990). Mathematics is beautiful. The Mathematical Intelligencer, 12(1), 59–61.

    Google Scholar 

  • Politzer, R. (1932). Rekursive Funktionen. In W. Saxer (Ed.), Verhandlungen des Internationalen Mathematiker-Kongresses Zürich 1932. Sektionsvorträge (Vol. 2, pp. 336–337). Orell Füssli Verlag.

    Google Scholar 

  • Sieg, W. (2013). Hilbert’s Programs and Beyond. Oxford University Press.

    Google Scholar 

  • Szabó, M. (2019). László Kalmár and the first university-level programming and computer science training in Hungary. In C. Leslie & M. Schmitt (Eds.). Histories of Computing in Eastern Europe: Conference Proceedings. IFIP WG 9.7 International Workshop on the History of Computing, HC 2018, Held at the 24th IFIP World Computer Congress, WCC 2018, Poznań, Poland, September 19–21, 2018, Revised Selected Papers (pp. 40–68). Springer.

    Google Scholar 

  • Szabó, M. (2021). Péter on Church’s thesis, constructivity and computers. In Proceedings of the Connecting with Computability: 17th Conference on Computability in Europe, CiE 2021, Virtual Event, Ghent, July 5–9, 2021 (pp. 434–445). Springer-Verlag.

    Google Scholar 

  • Turing, A. (1936). On computable numbers with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 42, 230–265.

    Google Scholar 

  • Turing, A. (1938). On computable numbers with an application to the Entscheidungsproblem: A correction. Proceedings of the London Mathematical Society, 43, 544–546.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Reichenberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reichenberger, A. (2022). Rózsa Péter on the Philosophy and Foundations of Mathematics: A Reappraisal. In: Peijnenburg, J., Verhaegh, S. (eds) Women in the History of Analytic Philosophy. Women in the History of Philosophy and Sciences, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-031-08593-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08593-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08592-5

  • Online ISBN: 978-3-031-08593-2

  • eBook Packages: HistoryHistory (R0)

Publish with us

Policies and ethics