Skip to main content

AI for Pooled Testing of COVID-19 Samples

  • Chapter
  • First Online:
Artificial Intelligence in Covid-19

Abstract

The COVID-19 pandemic has adversely affected millions all over the world. Efficient and effective testing of individuals for COVID-19, via modalities such as reverse transcription polymerase chain reaction (RT-PCR) is a crucial factor in combating this menace. Given the widespread scarcity of testing resources including testing kits, reagents, skilled manpower and available time, pooled testing has been advocated as a method of speed-up. Pooling involves mixing together small portions of ‘samples’ of different individuals, followed by testing the pools instead of the individual samples. It has been observed that a much smaller number of pools, as compared to the number of samples, is sufficient to allow for accurate prediction of the health status of the constituent samples, under the common and reasonable assumption that only a small number of the samples were infected. Artificial intelligence (AI) has emerged as a key tool in improving the prediction accuracy as well as efficiency of pooled testing. Such algorithmic tools are often studied within the frameworks of group testing and compressed sensing. In this chapter, we present algorithmic tools for pooled testing and recovery, giving a broad description of the use of AI for pooled testing in the context of COVID-19.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salathé M, Althaus CL, Neher R, Stringhini S, Hodcroft E, Fellay J, et al. COVID-19 epidemic in Switzerland: on the importance of testing, contact tracing and isolation. Swiss Med Wkly. 2020;150(11–12):w20225.

    Google Scholar 

  2. Emanuel EJ, Persad G, Upshur R, Thome B, Parker M, Glickman A, et al. Fair allocation of scarce medical resources in the time of Covid-19. N Engl J Med. 2020;382(21):2049–55.

    Article  Google Scholar 

  3. Lucia C, Federico PB, Alejandra GC. An ultrasensitive, rapid, and portable coronavirus SARS-CoV-2 sequence detection method based on CRISPR-Cas12. bioRxiv. 2020;2020:1127.

    Google Scholar 

  4. Ben-Assa N, Naddaf R, Gefen T, Capucha T, Hajjo H, Mandelbaum N, et al. SARS-CoV-2 on-the-spot virus detection directly from patients. medRxiv. 2020;2020:2389.

    Google Scholar 

  5. Nolan T, Hands RE, Bustin SA. Quantification of mRNA using real-time RT-PCR. Nat Protoc. 2006;1(3):1559–82.

    Article  CAS  Google Scholar 

  6. Yelin I, Aharony N, Shaer-Tamar E, Argoetti A, Messer E, Berenbaum D, et al. Evaluation of COVID-19 RT-qPCR test in multi-sample pools. MedRxiv. 2020;2020:2389.

    Google Scholar 

  7. Hanel R, Thurner S. Boosting test-efficiency by pooled testing strategies for SARS-CoV-2. 2020. https://arxiv.org/abs/2003.09944.

  8. Gilbert AC, Iwen MA, Strauss MJ. Group testing and sparse signal recovery. In: 2008 42nd Asilomar conference on signals, systems and computers. Piscataway, NJ: IEEE; 2008. p. 1059–63.

    Chapter  Google Scholar 

  9. Eldar YC, Kutyniok G. Compressed sensing: theory and applications. Cambridge: Cambridge University Press; 2012.

    Book  Google Scholar 

  10. Eldar YC. Sampling theory: beyond bandlimited systems. Cambridge: Cambridge University Press; 2015.

    Google Scholar 

  11. Shental N, Levy S, Skorniakov S, Wuvshet V, Shemer-Avni Y, Porgador A, et al. Efficient high throughput SARS-CoV-2 testing to detect asymptomatic carriers. Sci Adv. 2020;6(37):eabc5961.

    Article  CAS  Google Scholar 

  12. Ghosh S, Agarwal R, Rehan MA, Pathak S, Agarwal P, Gupta Y, et al. A compressed sensing approach to pooled RT-PCR testing for COVID-19 detection. IEEE Open J Signal Process. 2021;2:248–64.

    Article  Google Scholar 

  13. Yi J, Mudumbai R, Xu W. Low-cost and high-throughput testing of COVID-19 viruses and antibodies via compressed sensing: system concepts and computational experiments. 2020. https://arxiv.org/abs/2004.05759.

  14. Petersen HB, Bah B, Jung P. Practical high-throughput, non-adaptive and noise-robust SARS-CoV-2 testing. 2020. https://arxiv.org/abs/2007.09171.

  15. Yi J, Cho M, Wu X, Xu W, Mudumbai R. Error correction codes for COVID-19 virus and antibody testing: using pooled testing to increase test reliability. 2020. https://arxiv.org/abs/2007.14919.

  16. Zhu J, Rivera K, Baron D. Noisy pooled PCR for virus testing. 2020. https://arxiv.org/abs/2004.02689.

  17. Jawerth N. How is the COVID-19 virus detected using real time RT-PCR? https://www.iaea.org/newscenter/news/how-is-the-covid-19-virus-detected-using-real-time-rt-pcr.

  18. Efficiency of Real-Time PCR. https://www.thermofisher.com/in/en/home/life-science/pcr/real-time-pcr/real-time-pcr-learning-center/real-time-pcr-basics/efficiency-real-time-pcr-qpcr.html. Accessed 5 Apr 2021.

  19. Buchan B, et al. Distribution of SARS-CoV-2 PCR cycle threshold values provide practical insight into overall and target-specific sensitivity among symptomatic patients. Am J Clin Pathol. 2020;154(4):479–85.

    Article  CAS  Google Scholar 

  20. Gevertz J, Dunn S, Roth C. Mathematical model of real-time PCR kinetics. Biotechnol Bioeng. 2005;92(3):346–55.

    Article  CAS  Google Scholar 

  21. Wyllie AL. Saliva or nasopharyngeal swab specimens for detection of SARS-CoV-2. N Engl J Med. 2020;383(13):1283–6.

    Article  Google Scholar 

  22. Allen JWL, Verkerke H, Owens J, Saeedi B, Boyer D, Shin S, et al. Serum pooling for rapid expansion of anti-SARS-CoV-2 antibody testing capacity. Transfus Clin Biol. 2021;28(1):51–4.

    Article  CAS  Google Scholar 

  23. Hughes-Oliver JM, Swallow WH. A two-stage adaptive group-testing procedure for estimating small proportions. J Am Stat Assoc. 1994;89(427):982–93.

    Article  Google Scholar 

  24. Dorfman R. The detection of defective members of large populations. Ann Math Stat. 1943;14(4):436–40.

    Article  Google Scholar 

  25. Du D, Hwang FK, Hwang F. Combinatorial group testing and its applications, vol. 12. Singapore: World Scientific; 2000.

    Google Scholar 

  26. Macula AJ. Probabilistic nonadaptive group testing in the presence of errors and DNA library screening. Ann Comb. 1999;3(1):61–9.

    Article  Google Scholar 

  27. Varanasi MK. Group detection for synchronous Gaussian code-division multiple-access channels. IEEE Trans Inf Theory. 1995;41(4):1083–96.

    Article  Google Scholar 

  28. Cheraghchi M, Karbasi A, Mohajer S, Saligrama V. Graph-constrained group testing. IEEE Trans Inf Theory. 2012;58(1):248–62.

    Article  Google Scholar 

  29. Wu S, Wei S, Wang Y, Vaidyanathan R, Yuan J. Partition information and its transmission over boolean multi-access channels. IEEE Trans Inf Theory. 2014;61(2):1010–27.

    Article  Google Scholar 

  30. Bajwa WU, Haupt JD, Sayeed AM, Nowak RD. Joint source–channel communication for distributed estimation in sensor networks. IEEE Trans Inf Theory. 2007;53(10):3629–53.

    Article  Google Scholar 

  31. Clifford R, Efremenko K, Porat E, Rothschild A. k-mismatch with don’t cares. In: European symposium on algorithms. Berlin: Springer; 2007. p. 151–62.

    Google Scholar 

  32. Tsai WT, Chen Y, Cao Z, Bai X, Huang H, Paul R. Testing web services using progressive group testing. In: Advanced workshop on content computing. Berlin: Springer; 2004. p. 314–22.

    Chapter  Google Scholar 

  33. Cormode G, Muthukrishnan S. What’s new: finding significant differences in network data streams. IEEE/ACM Trans Netw. 2005;13(6):1219–32.

    Article  Google Scholar 

  34. Xuan Y, Shin I, Thai MT, Znati T. Detecting application denial-of-service attacks: a group-testing-based approach. IEEE Trans Parallel Distrib Syst. 2009;21(8):1203–16.

    Article  Google Scholar 

  35. Goodrich MT, Atallah MJ, Tamassia R. Indexing information for data forensics. In: International conference on applied cryptography and network security. Berlin: Springer; 2005. p. 206–21.

    Chapter  Google Scholar 

  36. Chan CL, Jaggi S, Saligrama V, Agnihotri S. Non-adaptive group testing: explicit bounds and novel algorithms. IEEE Trans Inf Theory. 2014;60(5):3019–35.

    Article  Google Scholar 

  37. Cohen A, Shlezinger N, Solomon A, Eldar YC, Médard M. Multi-level group testing with application to one-shot pooled COVID-19 tests. In: Proc. IEEE ICASSP; 2021.

    Google Scholar 

  38. Ben-Knaan EF, Shlezinger N, Eldar YC. Recovery of noisy pooled tests via learned factor graphs with application to COVID-19 testing. In: Proc. IEEE ICASSP; 2022.

    Google Scholar 

  39. Ben-Ami R, Klochendler A, Seidel M, Sido T, Gurel-Gurevich O, Yassour M, et al. Large-scale implementation of pooled RNA extraction and RT-PCR for SARS-CoV-2 detection. Clin Microbiol Infect. 2020;26(9):1248–53.

    Article  CAS  Google Scholar 

  40. Aldridge M, Johnson O, Scarlett J. Group testing: an information theory perspective. Found Trends Commun Inf Theory. 2019;15(3–4):196–392.

    Article  Google Scholar 

  41. Sobel M, Groll PA. Group testing to eliminate efficiently all defectives in a binomial sample. Bell Syst Tech J. 1959;38(5):1179–252.

    Article  Google Scholar 

  42. Hu M, Hwang F, Wang JK. A boundary problem for group testing. SIAM J Algebraic Discrete Methods. 1981;2(2):81–7.

    Article  Google Scholar 

  43. Atia GK, Saligrama V. Boolean compressed sensing and noisy group testing. IEEE Trans Inf Theory. 2012;58(3):1880–901.

    Article  Google Scholar 

  44. Kautz W, Singleton R. Nonrandom binary superimposed codes. IEEE Trans Inf Theory. 1964;10(4):363–77.

    Article  Google Scholar 

  45. Chan CL, Che PH, Jaggi S, Saligrama V. Non-adaptive probabilistic group testing with noisy measurements: near-optimal bounds with efficient algorithms. In: 2011 49th Annual Allerton conference on communication, control, and computing (Allerton). Piscataway, NJ: IEEE; 2011. p. 1832–9.

    Chapter  Google Scholar 

  46. Aldridge M, Baldassini L, Johnson O. Group testing algorithms: bounds and simulations. IEEE Trans Inf Theory. 2014;60(6):3671–87.

    Article  Google Scholar 

  47. Weiss Y, Freeman WT. On the optimality of solutions of the max-product belief-propagation algorithm in arbitrary graphs. IEEE Trans Inf Theory. 2001;47(2):736–44.

    Article  Google Scholar 

  48. Kschischang FR, Frey BJ, Loeliger HA. Factor graphs and the sum-product algorithm. IEEE Trans Inf Theory. 2001;47(2):498–519.

    Article  Google Scholar 

  49. MacKay DJ. Information theory, inference and learning algorithms. Cambridge: Cambridge University Press; 2003.

    Google Scholar 

  50. Shlezinger N, Farsad N, Eldar YC, Goldsmith AJ. Inference from stationary time sequences via learned factor graphs. IEEE Trans Signal Process. 2022.

    Google Scholar 

  51. Davenport M, Duarte M, Eldar Y, Kutyniok G. Introduction to compressed sensing. In: Eldar Y, Kutyniok G, editors. Compressed sensing: theory and applications. Cambridge: Cambridge University Press; 2012. p. 1–64.

    Google Scholar 

  52. Candes E. The restricted isometry property and its implications for compressive sensing. Comptes Rendus Math. 2008;346(9–10):589–92.

    Article  Google Scholar 

  53. Hastie T, Tibshirani R, Wainwright M. Statistical learning with sparsity: the LASSO and generalizations. Boca Raton: CRC Press; 2015.

    Book  Google Scholar 

  54. Baraniuk R, Davenport M, DeVore R, Wakin M. A simple proof of the restricted isometry property for random matrices. Constr Approx. 2008;28:253–63.

    Article  Google Scholar 

  55. Benatia D, Godefroy R, Lewis J. Estimating COVID-19 prevalence in the United States: a sample selection model approach. medRxiv. 2020;2020:2942. https://doi.org/10.1101/2020.04.20.20072942v1.

    Article  Google Scholar 

  56. Shental N, et al. Efficient high throughput SARS-CoV-2 testing to detect asymptomatic carriers. Sci Adv. 2020;6(37):5961.

    Article  Google Scholar 

  57. Ghosh S, et al. Tapestry: a single-round smart pooling technique for COVID-19 testing. medRxiv. 2020;2020:727. https://doi.org/10.1101/2020.04.23.20077727v1.

    Article  Google Scholar 

  58. Wipf D, Rao BD. Sparse Bayesian learning for basis selection. IEEE Trans Signal Process. 2004;52(8):2153–64.

    Article  Google Scholar 

  59. Kueng R, Jung P. Robust nonnegative sparse recovery and the nullspace property of 0/1 measurements. IEEE Trans Inf Theory. 2018;64(2):689–703.

    Article  Google Scholar 

  60. Pati Y, Rezaiifar R, Krishnaprasad P. Orthogonal matching pursuit: recursive function approximation with application to wavelet decomposition. In: Asilomar Conference on signals, systems and computing; 1993. p. 40–4.

    Google Scholar 

  61. Yaghoobi M, Wu D, Davies M. Fast non-negative orthogonal matching pursuit. IEEE Signal Process Lett. 2015;22(9):1229–33.

    Article  Google Scholar 

  62. Heidarzadeh A, Narayanan K. Two-stage adaptive pooling with RT-qPCR for COVID-19 screening. In: ICASSP; 2021.

    Book  Google Scholar 

  63. Nida H, Blum S, Zielinski D, Srivastava DA, Elbaum R, Xin Z, et al. Highly efficient de novo mutant identification in a Sorghum bicolor TILLING population using the ComSeq approach. Plant J. 2016;86:349–59.

    Article  CAS  Google Scholar 

  64. Shental N, Amir A, Zuk O. Identification of rare alleles and their carriers using compressed se(que)nsing. Nucleic Acids Res. 2010;38(79):e179.

    Article  Google Scholar 

  65. Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci. 2(1):183–202.

    Google Scholar 

  66. Tipping M. Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res. 2001;1:211–44.

    Google Scholar 

  67. Crespo Marques E, Maciel N, Naviner L, Cai H, Yang J. A review of sparse recovery algorithms. IEEE Access. 2019;7:1300–22.

    Article  Google Scholar 

  68. Goenka R, Cao SJ, Wong CW, Rajwade A, Baron D. Contact tracing information improves the performance of group testing algorithms. 2021. https://arxiv.org/abs/2106.02699.

  69. Reed IS, Solomon G. Polynomial codes over certain finite fields. J Soc Ind Appl Math. 1960;8(2):300–4.

    Article  Google Scholar 

  70. Naidu RR, Jampana P, Sastry CS. Deterministic compressed sensing matrices: construction via euler squares and applications. IEEE Trans Signal Process. 2016;64(14):3566–75.

    Article  Google Scholar 

  71. Naidu RR, Murthy CR. Construction of binary sensing matrices using extremal set theory. IEEE Signal Process Lett. 2017;24(2):211–5.

    Article  Google Scholar 

  72. DeVore RA. Deterministic constructions of compressed sensing matrices. J Complex. 2007;23(4):918–25.

    Article  Google Scholar 

  73. Candes E, Wakin M. An introduction to compressive sampling. IEEE Signal Process Mag. 2008;25(2):21–30.

    Article  Google Scholar 

  74. Bioglio V, Bianchi T, Magli E. On the fly estimation of the sparsity degree in compressed sensing using sparse sensing matrices. In: ICASSP. 2015:3801–5.

    Google Scholar 

  75. Ravazzi C, Fosson S, Bianchi T, Magli E. Sparsity estimation from compressive projections via sparse random matrices. EURASIP J Adv Signal Process. 2018;56:578.

    Google Scholar 

  76. Center for Disease Control and Prevention. Contact tracing for COVID-19. https://www.cdc.gov/coronavirus/2019-ncov/php/contact-tracing/contact-tracing-plan/contact-tracing.html.

  77. Case Investigation and Contact Tracing. Part of a multipronged approach to fight the COVID-19 pandemic. 2021. https://www.cdc.gov/coronavirus/2019-ncov/php/principles-contact-tracing.html.

  78. Hekmati A, Ramachandran G, Krishnamachari B. CONTAIN: privacy-oriented contact tracing protocols for epidemics. https://arxiv.org/abs/2004.05251.

  79. Kleinman R, Merkel C. Digital contact tracing for COVID-19. Can Med Assoc J. 2020;192(24):E653–6.

    Article  CAS  Google Scholar 

  80. Hohman M, McMaster F, Woodruff SI. Contact tracing for COVID-19: the use of motivational interviewing and the role of social work. Clin Soc Work J. 2021;49(4):419–28.

    Article  Google Scholar 

  81. Ross AM, Zerden L, Ruth B, Zelnick J, Cederbaum J. Contact tracing: an opportunity for social work to lead. Soc Work Public Health. 2020;35(7):533–45.

    Article  Google Scholar 

  82. Goenka R, Cao SJ, Wong CW, Rajwade A, Baron D. Contact tracing enhances the efficiency of COVID-19 Group Testing. In: ICASSP; 2021; pp. 8168–8172.

    Google Scholar 

  83. Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. J R Stat Soc Ser B. 2007;68(1):49–67.

    Article  Google Scholar 

  84. Jacob L, Obozinski G, Vert JP. Group LASSO with overlap and graph LASSO. In: Proceedings of the 26th Annual International Conference on machine learning. 2009.

    Google Scholar 

  85. Nikolopoulos P, Srinivasavaradhan SR, Guo T, Fragouli C, Diggavi S. Group testing for connected communities. In: AISTATS; 2021.

    Google Scholar 

  86. Nikolopoulos P, Srinivasavaradhan SR, Guo T, Fragouli C, Diggavi S. Group testing for overlapping communities. In: IEEE International conference on communications 2021; pp. 1–7.

    Google Scholar 

  87. Attia M, Chang W, Tandon R. Heterogeneity aware two-stage group testing. IEEE Trans Signal Process. 2021;69:3977–90.

    Article  Google Scholar 

  88. Bilder CR, Tebbs JM, Chen P. Informative retesting. J Am Stat Assoc. 2010;105(491):942–55.

    Article  CAS  Google Scholar 

  89. McMahan CS, Tebbs JM, Bilder CR. Informative Dorfman screening. Biometrics. 2012;68(1):287–96.

    Article  Google Scholar 

  90. Deckert A, Barnighausen T, Kyei NN. Simulation of pooled-sample analysis strategies for COVID-19 mass testing. Bull World Health Organ. 2020;98(9):590.

    Article  Google Scholar 

  91. Arasli B, Ulukus S. Group testing for overlapping communities. 2021. https://arxiv.org/abs/2101.05792.

  92. Ahn S, Chen WN, Ozgur A. Adaptive group testing on networks with community structure. 2021. https://arxiv.org/abs/2101.02405.

  93. Lendle SD, Hudgens MG, Qaqish BF. Group testing for case identification with correlated responses. Biometrics. 2012;68:532–40.

    Article  Google Scholar 

  94. Lin YJ, Yu CH, Liu TH, Chang CS, Chen WT. Positively correlated samples save pooled testing costs. 2020. https://arxiv.org/abs/2011.09794.

  95. List of countries implementing pool testing strategy against COVID-19. https://en.wikipedia.org/wiki/List_of_countries_implementing_pool_testing_strategy_against_COVID-19.

  96. IIT-Bombay professor comes up with new tool for Covid testing. It cuts time and cost. 2021. https://theprint.in/health/iit-bombay-professor-comes-up-with-new-tool-for-covid-testing-it-cuts-time-and-cost/684709/.

  97. Deka S, Kalita D. Effectiveness of sample pooling strategies for SARS-CoV-2 mass screening by RT-PCR: a scoping review. J Lab Physicians. 2020;12(03):212–8.

    Article  CAS  Google Scholar 

  98. Gatta VL, Moscato V, Postiglione M, Sperli G. An epidemiological neural network exploiting dynamic graph structured data applied to the COVID-19 outbreak. IEEE Trans Big Data. 2021;7(1):45–55.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajwade, A., Shlezinger, N., Eldar, Y.C. (2022). AI for Pooled Testing of COVID-19 Samples. In: Lidströmer, N., Eldar, Y.C. (eds) Artificial Intelligence in Covid-19. Springer, Cham. https://doi.org/10.1007/978-3-031-08506-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08506-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08505-5

  • Online ISBN: 978-3-031-08506-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics