Skip to main content

Effect of Hand Dominance When Decoding Motor Imagery Grasping Tasks

  • Conference paper
  • First Online:
Computational Neuroscience (LAWCN 2021)

Abstract

Discriminating between different motor imagery tasks within the same limb is challenging because of the proximity of their spatial representations on the motor cortex. Overcoming this challenge would largely increase the number of control dimensions and pave the way for more practical brain-computer interfaces (BCIs). This paper explores how hand dominance affects classification performance when decoding different motor imagery tasks completed with the same hand. This aspect has, to the best of our knowledge, not been presented in the literature before. The performance was also evaluated to see if acceptable accuracies for real-life applications could be reached without handcrafted features. EEG signals were collected from nine subjects performing the same set of imagery grasping tasks with both dominant and non-dominant hand. The signals were analyzed using traditional state-of-the-art methods, such as filterbank common spatial patterns (FBCSP) and Tangent Space (TS), in addition to well-validated convolutional neural networks designed for limited data. Automatic channel selection according to a Riemannian geometry criterion before classification improved discrimination. Variation in performance when using dominant versus non-dominant hand was found for all the subjects. To establish whether these differences are statistically significant, or to identify trends, more data is required. Five out of nine subjects achieved accuracies above 70% for classification within the same hand without using tailored features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ang, K.K., et al.: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b. Front. Neurosci. 6 (2012). ISSN: 1662-453X. https://doi.org/10.3389/fnins.2012.00039. https://www.frontiersin.org/articles/10.389/fnins.2012.00039/full#B1. Accessed 06 Sept 2021

  2. Ang, K., et al.: Filter Bank Common Spatial Pattern (FBCSP) in braincomputer interface. In: Proceedings of the International Joint Conference on Neural Networks, p. 2397. July 2008. https://doi.org/10.1109/IJCNN.2008.4634130

  3. Barachant, A.: MEG decoding using Riemannian Geometry and Unsupervised classification (2014)

    Google Scholar 

  4. Barachant, A., et al.: Classification of covariance matrices using a Riemannian-based kernel for BCI applications. Neurocomputing 112, 172–178 (2013). https://doi.org/10.1016/j.neucom.2012. https://hal.archives-ouvertes.fr/hal- 00820475. Accessed 06 Oct 2021

  5. Barachant, A., et al.: Multiclass brain-computer interface classification by Riemannian geometry. IEEE Trans. Biomed. Eng. 59(4), 920–928 (2012). https://doi.org/10.1109/TBME.2011.2172210. https://hal.archives-ouvertes.fr/hal-00681328. Accessed 06 Oct 2021

  6. Blankertz, B., et al.: The berlin brain-computer interface: non- medical uses of BCI technology. Front. Neurosci. 4 (2010). ISSN: 1662–4548. https://doi.org/10.3389/fnins.2010.00198. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3002462/. Accessed 13 June 2021

  7. Brainard, D.H.: The psychophysics toolbox. Spat. Vis. 10(4), 433–436 (1997). ISSN: 0169–1015

    Google Scholar 

  8. Cho, H., et al.: A step-by-step tutorial for a motor imagery-based BCI, pp. 445–460 (2018)

    Google Scholar 

  9. Edelman, B.J., Baxter, B., He, B.: EEG source imaging enhances the decoding of complex right-hand motor imagery tasks. IEEE Trans. Bio-Med. Eng. 63(1), 4–14 (2016). ISSN: 1558–2531. https://doi.org/10.1109/TBME.2015.2467312

  10. Ge, S., Wang, R., Yu, D.: Classification of four-class motor imagery employing single-channel electroencephalography. PLOS ONE 9(6), e98019 (2014). ISSN: 1932–6203. https://doi.org/10.1371/journal.pone.0098019. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0098019. Accessed 18 May 2021

  11. Graimann, B., Allison, B., Pfurtscheller, G.: Brain–computer interfaces: a gentle introduction. In: Graimann, B., Pfurtscheller, G., Allison, B. (eds.) Brain-Computer Interfaces: Revolutionizing Human-Computer Interaction. The Frontiers Collection, pp. 1–27. Springer, Heidelberg (2010). ISBN: 978-3-642-02091-9. https://doi.org/10.1007/978-3-642-02091-9_1. Accessed 13 June 2021

  12. Gramfort, A., et al.: MEG and EEG data analysis with MNEPython. Front. Neurosci. 7 (2013). ISSN: 1662–453X. https://doi.org/10.3389/fnins.2013.00267. https://www.frontiersin.org/articles/10.3389/fnins.2013.00267/full. Accessed 9 June 2021

  13. Kübler, A., et al.: Brain-computer communication: self-regulation of slow cortical potentials for verbal communication. Arch. Phys. Med. Rehabil. 82(11), 1533–1539 (2001). ISSN: 0003–9993. https://doi.org/10.1053/apmr.2001.26621

  14. Lawhern, V.J., et al.: EEGNet: a compact convolutional network for EEG-based brain-computer interfaces. J. Neural Eng. 15(5), 056013 (2018). arXiv: 1611.08024. ISSN: 1741–2560, 1741–2552. https://doi.org/10.1088/1741-2552/aace8c. Accessed 10 June 2021

  15. Lee, M.-H., et al.: EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy. GigaScience 8(5) (2019). ISSN: 2047–217X. https://doi.org/10.1093/gigascience/giz002. Accessed 15 June 2021

  16. Li, A., et al.: Towards paradigm-independent brain computer interfaces, pp. 1–6 (2020). https://doi.org/10.1109/BCI48061.2020.9061657

  17. Liao, K., et al.: Decoding individual finger movements from one hand using human EEG signals. PLOS ONE 9(1), e85192 (2014). ISSN: 1932–6203. https://doi.org/10.1371/journal.pone.0085192. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085192. Accessed 18 May 2021

  18. Lotte, F., et al.: A review of classification algorithms for EEG-based braincomputer interfaces: a 10 year update. J. Neural Eng. 15(3), 031005 (2018). ISSN: 1741–2552. https://doi.org/10.1088/1741-2552/aab2f2

  19. Lotte, F.: Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain-computer interfaces. Proc. IEEE 103, 871–890 (2015). https://doi.org/10.1109/JPROC.2015.2404941

  20. Marquez-Chin, C., Atwell, K., Popovic, M.R.: Prediction of specific hand movements using electroencephalographic signals. J. Spinal Cord Med. 40(6), 696–705 (2017). ISSN: 1079–0268. https://doi.org/10.1080/10790268.2017.1369215. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5778933/. Accessed 18 May 2021

  21. Navarro, I., Hubais, B., Sepulveda, F.: A comparison of time, frequency and ICA based features and five classifiers for wrist movement classification in EEG signals. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp. 2118–2121, January 2005. ISSN: 1558–4615. https://doi.org/10.1109/IEMBS.2005.1616878

  22. Padfield, N., et al.: EEG-based brain-computer interfaces using motor-imagery: techniques and challenges. Sensors (Basel Switzerland) 19(6) (2019). ISSN: 1424–8220. https://doi.org/10.3390/s19061423. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471241/. Accessed 13 June 2021

  23. Pfurtscheller, G., Neuper, C.: Motor imagery activates primary sensorimotor area in humans. Neurosci. Lett. 239(2), 65–68 (1997). ISSN: 0304–3940. https://doi.org/10.1016/S0304-3940(97)00889-6

  24. Riyad, M., Khalil, M., Adib, A.: MI-EEGNET: a novel convolutional neural network for motor imagery classification. J. Neurosci. Methods 353, 109037 (2021). ISSN: 0165–0270. https://doi.org/10.1016/j.jneumeth.2020.109037. https://www.sciencedirect.com/science/article/pii/S016502702030460X. Accessed 20 May 2021

  25. Rodríguez-Bermúdez, G., García-Laencina, P.J.: Automatic and adaptive classification of electroencephalographic signals for brain computer interfaces. J. Med. Syst. 36(Suppl 1), S51–63 (2012). ISSN: 0148–5598. https://doi.org/10.1007/s10916-012-9893-4

  26. Roy, Y., et al.: Deep learning-based electroencephalography analysis: a systematic review. J. Neural Eng. 16(5), 051001–051001 (2019). ISSN: 1741–2560. https://doi.org/10.1088/1741-2552/ab260c

  27. Sakhavi, S., Guan, C., Yan, S.: Parallel convolutionallinear neural network for motor imagery classification. In: 2015 23rd European Signal Processing Conference (EUSIPCO), pp. 2736–2740. IEEE, Nice, August 2015. https://doi.org/10.1109/EUSIPCO.2015.7362882. http://ieeexplore.ieee.org/document/7362882/. Accessed 14 June 2021

  28. Schirrmeister, R.T., et al.: Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 38(11), 5391–5420 (2017). ISSN: 1097-0193. https://doi.org/10.1002/hbm.23730. https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.23730. Accessed 15 June 2021

  29. Schlogl, A., et al.: Evaluation criteria for BCI research, p. 66 (2007)

    Google Scholar 

  30. Schlögl, A., et al.: Characterization of four-class motor imagery EEG data for the BCI-competition 2005. J. Neural Eng. 2(4), L14–22 (2005). ISSN: 1741-2560. https://doi.org/10.1088/1741-2560/2/4/L02

  31. Stinear, C., et al.: Kinesthetic, but not visual, motor imagery modulates corticomotor excitability. Exp. Brain Res. Experimentelle Hirnforschung. Expérimentation cérébrale 168, 157–164 (2006). https://doi.org/10.1007/s00221-005-0078-y

  32. Yong, X., Menon, C.: EEG classification of different imaginary movements within the same limb. PLoS ONE 10(4) (2015). ISSN: 1932–6203. https://doi.org/10.1371/journal.pone.0121896. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382224/. Accessed 18 May 2021

  33. Zapała, D., et al.: The effects of handedness on sensorimotor rhythm desynchronization and motor-imagery BCI control. Sci. Rep. 10 (2020). ISSN: 2045–2322. https://doi.org/10.1038/s41598-020-59222-w. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7005877/. Accessed 15 May 2021

Download references

Acknowledgments

This work is partially supported by The Research Council of Norway as a part of the Predictive and Intuitive Robot Companion (PIRC) project under grant agreement 312333 and through its Centres of Excellence scheme, RITMO with project No. 262762. The authors would also like to thank Rahul Omprakash Agrawal and Henrik Eijsink for assistance with the lab and useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrine Linnea Nergård .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nergård, K.L., Endestad, T., Torresen, J. (2022). Effect of Hand Dominance When Decoding Motor Imagery Grasping Tasks. In: Ribeiro, P.R.d.A., Cota, V.R., Barone, D.A.C., de Oliveira, A.C.M. (eds) Computational Neuroscience. LAWCN 2021. Communications in Computer and Information Science, vol 1519. Springer, Cham. https://doi.org/10.1007/978-3-031-08443-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08443-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08442-3

  • Online ISBN: 978-3-031-08443-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics