Skip to main content

Nonsequential Pre-mRNA Splicing: From Basic Understanding to Impacts on Splice-Manipulating Therapies

  • Chapter
  • First Online:
Messenger RNA Therapeutics

Part of the book series: RNA Technologies ((RNATECHN,volume 13))

  • 1085 Accesses

Abstract

The pre-mRNA splicing process is an essential aspect of gene expression and function and plays a substantial role in the complexity of higher eukaryotes. The development of antisense oligonucleotides (AOs) to harness the splicing process and manipulate it to treat various inherited and acquired diseases has been boosted by its flexibility and customisation capability. As the amount of research in this space increases, certain aspects need to be considered, in particular, how nonsequential splicing of pre-mRNA can impact AO-mediated splicing manipulation. In this chapter, we reviewed literature discussing intron removal order and several examples of disease-causing mutations impacted by this phenomenon. We also compared two strategies used to study intron removal order and the occasions that they are best suited. Finally, we discuss how nonsequential splicing could facilitate or impede the development of splice-manipulating AOs and aspects to consider when analysing AO effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aartsma-Rus A, Bremmer-Bout M, Janson AA et al (2002) Targeted exon skipping as a potential gene correction therapy for Duchenne muscular dystrophy. Neuromuscul Disord 12(Suppl 1):S71-77

    Article  PubMed  Google Scholar 

  • Aartsma-Rus A, Fokkema I, Verschuuren J et al (2009) Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat 30:293–299

    Article  PubMed  Google Scholar 

  • Adkin CF, Meloni PL, Fletcher S et al (2012) Multiple exon skipping strategies to by-pass dystrophin mutations. Neuromuscul Disord 22:297–305

    Article  PubMed  PubMed Central  Google Scholar 

  • Attanasio C, David A, Neerman-Arbez M (2003) Outcome of donor splice site mutations accounting for congenital afibrinogenemia reflects order of intron removal in the fibrinogen alpha gene (FGA). Blood 101:1851–1856

    Article  CAS  PubMed  Google Scholar 

  • Aung-Htut MT, Comerford I, Johnsen R et al (2019) Reduction of integrin alpha 4 activity through splice modulating antisense oligonucleotides. Sci Rep 9:12994–13005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baralle FE, Giudice J (2017) Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol 18:437–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baralle M, Skoko N, Knezevich A et al (2006) NF1 mRNA biogenesis: effect of the genomic milieu in splicing regulation of the NF1 exon 37 region. FEBS Lett 580:4449–4456

    Article  CAS  PubMed  Google Scholar 

  • Berk AJ, Sharp PA (1977) Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease-digested hybrids. Cell 12:721–732

    Article  CAS  PubMed  Google Scholar 

  • Bradnam KR, Korf I (2008) Longer first introns are a general property of eukaryotic gene structure. PLoS ONE 3:e3093

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chelly J, Gilgenkrantz H, Lambert M et al (1990) Effect of dystrophin gene deletions on mRNA levels and processing in Duchenne and Becker muscular dystrophies. Cell 63:1239–1248

    Article  CAS  PubMed  Google Scholar 

  • Chow LT, Roberts JM, Lewis JB et al (1977) A map of cytoplasmic RNA transcripts from lytic adenovirus type 2, determined by electron microscopy of RNA:DNA hybrids. Cell 11:819–836

    Article  CAS  PubMed  Google Scholar 

  • Crooke ST, Baker BF, Crooke RM et al (2021) Antisense technology: an overview and prospectus. Nat Rev Drug Discov 20:427–453

    Article  CAS  PubMed  Google Scholar 

  • De La Mata M, Alonso CR, Kadener S et al (2003) A slow RNA polymerase II affects alternative splicing in vivo. Mol Cell 12:525–532

    Article  PubMed  Google Scholar 

  • Den Dunnen JT, Grootscholten PM, Bakker E et al (1989) Topography of the Duchenne muscular dystrophy (DMD) gene: FIGE and cDNA analysis of 194 cases reveals 115 deletions and 13 duplications. Am J Hum Genet 45:835–847

    Google Scholar 

  • Dominski Z, Kole R (1993) Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc Natl Acad Sci USA 90:8673–8677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Echigoya Y, Lim KRQ, Melo D et al (2019) Exons 45–55 skipping using mutation-tailored cocktails of antisense morpholinos in the DMD gene. Mol Ther 27:2005–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreiro V, Giliberto F, Muñiz GMN et al (2009) Asymptomatic Becker muscular dystrophy in a family with a multiexon deletion. Muscle Nerve 39:239–243

    Article  CAS  PubMed  Google Scholar 

  • Fletcher S, Adkin CF, Meloni P et al (2012) Targeted exon skipping to address “leaky” mutations in the dystrophin gene. Mol Ther Nucleic Acids 1:e48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fong N, Kim H, Zhou Y et al (2014) Pre-mRNA splicing is facilitated by an optimal RNA polymerase II elongation rate. Genes Dev 28:2663–2676

    Article  PubMed  PubMed Central  Google Scholar 

  • Fox-Walsh KL, Dou Y, Lam BJ et al (2005) The architecture of pre-mRNAs affects mechanisms of splice-site pairing. Proc Natl Acad Sci USA 102:16176–16181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gazzoli I, Pulyakhina I, Verwey NE et al (2016) Non-sequential and multi-step splicing of the dystrophin transcript. RNA Biol 13:290–305

    Article  PubMed  Google Scholar 

  • Gudas JM, Knight GB, Pardee AB (1990) Ordered splicing of thymidine kinase pre-mRNA during the S phase of the cell cycle. Mol Cell Biol 10:5591–5595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gumińska N, Płecha M, Zakryś B et al (2018) Order of removal of conventional and nonconventional introns from nuclear transcripts of Euglena gracilis. PLOS Genet 14:e1007761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ham KA, Aung-Htut MT, Fletcher S et al (2020) Nonsequential splicing events alter antisense-mediated exon skipping outcome in COL7A1. Int J Mol Sci 21:7705–7719

    Article  CAS  PubMed Central  Google Scholar 

  • Haque N, Oberdoerffer S (2014) Chromatin and splicing. Methods Mol Biol 1126:97–113

    Article  PubMed  PubMed Central  Google Scholar 

  • Havens MA, Hastings ML (2016) Splice-switching antisense oligonucleotides as therapeutic drugs. Nucleic Acids Res 44:6549–6563

    Article  PubMed  PubMed Central  Google Scholar 

  • Kadener S, Fededa JP, Rosbash M et al (2002) Regulation of alternative splicing by a transcriptional enhancer through RNA pol II elongation. Proc Natl Acad Sci USA 99:8185–8190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keegan NP (2020) Pseudoexons of the DMD gene. J Neuromuscul Dis 7:77–95

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelemen O, Convertini P, Zhang Z et al (2013) Function of alternative splicing. Gene 514:1–30

    Article  CAS  PubMed  Google Scholar 

  • Kessler O, Jiang Y, Chasin LA (1993) Order of intron removal during splicing of endogenous adenine phosphoribosyltransferase and dihydrofolate reductase pre-mRNA. Mol Cell Biol 13:6211–6222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SW, Taggart AJ, Heintzelman C et al (2017) Widespread intra-dependencies in the removal of introns from human transcripts. Nucleic Acids Res 45:9503–9513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koenig M, Beggs AH, Moyer M et al (1989) The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion. Am J Hum Genet 45:498–506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Rio DC (2015) Mechanisms and regulation of alternative pre-mRNA splicing. Annu Rev Biochem 84:291–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Adams AM, Johnsen RD et al (2020) Morpholino oligomer-induced dystrophin isoforms to map the functional domains in the dystrophin protein. Mol Ther Nucleic Acids 22:263–272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li D, McIntosh CS, Mastaglia FL et al (2021) Neurodegenerative diseases: a hotbed for splicing defects and the potential therapies. Transl Neurodegener 10:16–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mann CJ, Honeyman K, Cheng AJ et al (2001) Antisense-induced exon skipping and synthesis of dystrophin in the mdx mouse. Proc Natl Acad Sci USA 98:42–47

    Article  CAS  PubMed  Google Scholar 

  • McClorey G, Moulton HM, Iversen PL et al (2006) Antisense oligonucleotide-induced exon skipping restores dystrophin expression in vitro in a canine model of DMD. Gene Ther 13:1373–1381

    Article  CAS  PubMed  Google Scholar 

  • Mitrpant C, Adams AM, Meloni PL et al (2009) Rational design of antisense oligomers to induce dystrophin exon skipping. Mol Ther 17:1418–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neri M, Rossi R, Trabanelli C et al (2020) The genetic landscape of dystrophin mutations in Italy: a nationwide study. Front Genet 11:131–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nobile C, Marchi J, Nigro V et al (1997) Exon-intron organization of the human dystrophin gene. Genomics 45:421–424

    Article  CAS  PubMed  Google Scholar 

  • Nogues G, Munoz MJ, Kornblihtt AR (2003) Influence of polymerase II processivity on alternative splicing depends on splice site strength. J Biol Chem 278:52166–52171

    Article  CAS  PubMed  Google Scholar 

  • Noteborn M, Arnberg A, de Jonge M et al (1986) Splicing pathways of the chicken apo very low density lipoprotein II (pre)messenger RNA. FEBS Lett 194:151–156

    Article  CAS  PubMed  Google Scholar 

  • Park E, Pan Z, Zhang Z et al (2018) The expanding landscape of alternative splicing variation in human populations. Am J Hum Genet 102:11–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pulyakhina I, Gazzoli I, t Hoen PA, et al (2015) SplicePie: a novel analytical approach for the detection of alternative, non-sequential and recursive splicing. Nucleic Acids Res 43:e80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodrigues M, Yokota T (2018) An overview of recent advances and clinical applications of exon skipping and splice modulation for muscular dystrophy and various genetic diseases. Springer, New York, pp 31–55

    Google Scholar 

  • Saito M, Masunaga T, Ishiko A (2009) A novel de novo splice-site mutation in the COL7A1 gene in dominant dystrophic epidermolysis bullosa (DDEB): specific exon skipping could be a prognostic factor for DDEB pruriginosa. Clin Exp Dermatol 34:e934

    Article  CAS  PubMed  Google Scholar 

  • Schor IE, Gomez Acuna LI, Kornblihtt AR (2013) Coupling between transcription and alternative splicing. Cancer Treat Res 158:1–24

    Article  PubMed  CAS  Google Scholar 

  • Schwarze U, Starman BJ, Byers PH (1999) Redefinition of exon 7 in the COL1A1 gene of type I collagen by an intron 8 splice-donor-site mutation in a form of osteogenesis imperfecta: influence of intron splice order on outcome of splice-site mutation. Am J Hum Genet 65:336–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla S, Oberdoerffer S (2012) Co-transcriptional regulation of alternative pre-mRNA splicing. Biochim Biophys Acta 1819:673–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperling R (2017) The nuts and bolts of the endogenous spliceosome. Wires RNA 8:e1377

    Google Scholar 

  • Takahara K, Schwarze U, Imamura Y et al (2002) Order of intron removal influences multiple splice outcomes, including a two-exon skip, in a COL5A1 acceptor-site mutation that results in abnormal pro-α1(V) N-propeptides and Ehlers-Danlos syndrome type I. Am J Hum Genet 71:451–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tennyson CN, Klamut HJ, Worton RG (1995) The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced. Nat Genet 9:184–190

    Article  CAS  PubMed  Google Scholar 

  • Tsai M-J, Ting AC, Nordstrom JL et al (1980) Processing of high molecular weight ovalbumin and ovomucoid precursor RNAs to messenger RNA. Cell 22:219–230

    Article  CAS  PubMed  Google Scholar 

  • Van Vliet L, De Winter CL, Van Deutekom JC et al (2008) Assessment of the feasibility of exon 45–55 multiexon skipping for duchenne muscular dystrophy. BMC Med Genet 9:105–111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wahl MC, Will CL, Luhrmann R (2009) The spliceosome: design principles of a dynamic RNP machine. Cell 136:701–718

    Article  CAS  PubMed  Google Scholar 

  • Walsh PS, Erlich HA, Higuchi R (1992) Preferential PCR amplification of alleles: mechanisms and solutions. PCR Methods Appl 1:241–250

    Article  CAS  PubMed  Google Scholar 

  • Ward AJ, Cooper TA (2010) The pathobiology of splicing. J Pathol 220:152–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M, Wu J, Wu SH et al (2012) Splicing of mouse p53 pre-mRNA does not always follow the “first come, first served” principle and may be influenced by cisplatin treatment and serum starvation. Mol Biol Rep 39:9247–9256

    Article  CAS  PubMed  Google Scholar 

  • Young CS, Pyle AD (2016) Exon skipping therapy. Cell 167:1144

    Article  CAS  PubMed  Google Scholar 

  • Zeitlin S, Efstratiadis A (1984) In vivo splicing products of the rabbit β-globin pre-mRNA. Cell 39:589–602

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to May T. Aung-Htut .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ham, K.A., Wilton, S.D., Aung-Htut, M.T. (2022). Nonsequential Pre-mRNA Splicing: From Basic Understanding to Impacts on Splice-Manipulating Therapies. In: Jurga, S., Barciszewski, J. (eds) Messenger RNA Therapeutics. RNA Technologies, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-031-08415-7_19

Download citation

Publish with us

Policies and ethics