Skip to main content

Preparation of Messenger RNA-Loaded Nanomedicine Applied on Tissue Engineering and Regenerative Medicine

  • Chapter
  • First Online:
Messenger RNA Therapeutics

Part of the book series: RNA Technologies ((RNATECHN,volume 13))

  • 1105 Accesses

Abstract

Tissue engineering holds great promise for regenerative medicine; the multipotent cell lineage, biocompatible tissue-compliant biomaterials, and critical differentiation cues compose the critical factors for successful tissue engineering applied to regenerative medicine. The critical differentiation cues could be provided by recombinant proteins, alternative novel therapeutics, and gene therapy, including viral and non-viral-based methodology. One of the emerged gene therapeutics is messenger RNA (mRNA) administration, which holds critical advantages, such as tentative drug expression, no DNA backbone remaining in the cytosol, and easy to be manufactured as cocktail therapeutics and scaled up in a good manufacture process (GMP) factory. However, the successful mRNA medicine applied to tissue engineering remains challenging, including sophisticated mRNA medicine carriers, endosomal escape capability, targeted delivery, fine-tuned gene expression duration, and subsequent immune responses. This chapter will discuss the up-to-date technologies addressed on mRNA manufacture, sophisticated carrier design, mRNA medicine endosomal escape, nuclease resistance, and sustained expression. Furthermore, combined with tissue engineering, we will also introduce the mRNA medicine selection for therapeutic purposes, applied on the diseased animal model, mRNA activated matrix construction, and subsequent evaluation criteria will also be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi S, Uchida S, Toh K et al (2021) Co-encapsulation of Cas9 mRNA and guide RNA in polyplex micelles enables genome editing in mouse brain. J Control Release 332:260–268

    Article  CAS  PubMed  Google Scholar 

  • Adhikary A, Kumar A, Heizer AN et al (2013) Hydroxyl ion addition to one-electron oxidized thymine: unimolecular interconversion of C5 to C6 OH-adducts. J Am Chem Soc 135:3121–3135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aini H, Itaka K, Fujisawa A et al (2016) Messenger RNA delivery of a cartilage-anabolic transcription factor as a disease-modifying strategy for osteoarthritis treatment. Sci Rep 6:18743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amoozgar Z, Yeo Y (2012) Recent advances in stealth coating of nanoparticle drug delivery systems. Wiley Interdiscip Rev-Nanomed Nanobiotechnol 4:219–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrzejewska A, Dabrowska S, Nowak B et al (2020) Mesenchymal stem cells injected into carotid artery to target focal brain injury home to perivascular space. Theranostics 10:6615–6628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baba M, Itaka K, Kondo K et al (2015) Treatment of neurological disorders by introducing mRNA in vivo using polyplex nanomicelles. J Control Release 201:41–48

    Article  CAS  PubMed  Google Scholar 

  • Badieyan ZS, Berezhanskyy T, Utzinger M et al (2016) Transcript-activated collagen matrix as sustained mRNA delivery system for bone regeneration. J Control Release 239:137–148

    Article  CAS  PubMed  Google Scholar 

  • Balmayor ER, Geiger JP, Aneja MK et al (2016) Chemically modified RNA induces osteogenesis of stem cells and human tissue explants as well as accelerates bone healing in rats. Biomaterials 87:131–146

    Article  CAS  PubMed  Google Scholar 

  • Balmayor ER, Geiger JP, Koch C et al (2017) Modified mRNA for BMP-2 in combination with biomaterials serves as a transcript-activated matrix for effectively inducing osteogenic pathways in stem cells. Stem Cells Develop 26:25–34

    Article  CAS  Google Scholar 

  • Blanco FJ, Ruiz-Romero C (2013) New targets for disease modifying osteoarthritis drugs: chondrogenesis and Runx1. Ann Rheum Dis 72:631–634

    Article  CAS  PubMed  Google Scholar 

  • Boczkowski D, Nair SK, Snyder D et al (1996) Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med 184:465–472

    Article  CAS  PubMed  Google Scholar 

  • Breunig M, Lungwitz U, Liebl R et al (2007) Breaking up the correlation between efficacy and toxicity for nonviral gene delivery. Proc Natl Acad Sci USA 104:14454–14459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brito LA, Chan M, Shaw CA et al (2014) A cationic nanoemulsion for the delivery of next-generation RNA vaccines. Mol Ther 22:2118–2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bus T, Traeger A, Schubert US (2018) The great escape: how cationic polyplexes overcome the endosomal barrier. J Mater Chem B 6:6904–6918

    Article  CAS  PubMed  Google Scholar 

  • Buschmann MD, Carrasco MJ, Alishetty S et al (2021) Nanomaterial delivery systems for mRNA vaccines. Vaccines (basel) 9:65

    Article  CAS  Google Scholar 

  • Cabral H, Kataoka K (2009) Smart nanoassemblies of block copolymers for drug and gene delivery. Adv Nanomater 1:014109

    Google Scholar 

  • Chan D, Song Y, Sham P et al (2006) Genetics of disc degeneration. Eur Spine J 15(Suppl 3):S317-325

    Article  PubMed  Google Scholar 

  • Chan LY, Khung YL, Lin CY (2019) Preparation of messenger rna nanomicelles via non-cytotoxic PEG-polyamine nanocomplex for intracerebroventicular delivery: a proof-of-concept study in mouse models. Nanomaterials (basel) 9:67

    Article  CAS  Google Scholar 

  • Chang CC, Tsou HK, Chang HH et al (2022) Runx1 messenger RNA delivered by polyplex nanomicelles alleviate spinal disc hydration loss in a rat disc degeneration model. Int J Mol Sci 23 (1). https://doi.org/10.3390/ijms23010565

  • Chaudhary N, Weissman D, Whitehead KA (2021) mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat Rev Drug Discov 20:817–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng X, Lee RJ (2016) The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv Drug Deliv Rev 99:129–137

    Article  CAS  PubMed  Google Scholar 

  • Chien KR, Zangi L, Lui KO (2014) Synthetic chemically modified mRNA (modRNA): toward a new technology platform for cardiovascular biology and medicine. Cold Spring Harb Perspect Med 5:a014035

    Article  PubMed  CAS  Google Scholar 

  • Corbett KS, Edwards DK, Leist SR et al (2020) SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 586:567–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowley ST, Fukushima Y, Uchida S et al (2019) Enhancement of motor function recovery after spinal cord injury in mice by delivery of brain-derived neurotrophic factor mRNA. Mol Ther-Nucleic Acids 17:465–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui SH, Wang YY, Gong Y et al (2018) Correlation of the cytotoxic effects of cationic lipids with their headgroups. Toxicol Res (camb) 7:473–479

    Article  CAS  Google Scholar 

  • Cullis PR, Hope MJ (2017) Lipid nanoparticle systems for enabling gene therapies. Mol Ther 25:1467–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eberle F, Sahin U, Kuhn A et al (2020) Stabilization of poly (A) sequence encoding DNA sequences. Google Patents

    Google Scholar 

  • El-Amouri SS, Zhu H, Yu J et al (2008) Neprilysin: an enzyme candidate to slow the progression of Alzheimer’s disease. Am J Pathol 172:1342–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Federico P, Satoshi U, Hiroki A et al (2017) Improved brain expression of anti-amyloid β scFv by complexation of mRNA including a secretion sequence with PEG-based block catiomer. Curr Alzheimer Res 14:295–302

    Article  CAS  Google Scholar 

  • Fontana G, See E, Pandit A (2015) Current trends in biologics delivery to restore intervertebral disc anabolism. Adv Drug Deliv Rev 84:146–158

    Article  CAS  PubMed  Google Scholar 

  • Fröhlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomed 7:5577–5591

    Article  Google Scholar 

  • Fukushima Y, Uchida S, Imai H et al (2021) Treatment of ischemic neuronal death by introducing brain-derived neurotrophic factor mRNA using polyplex nanomicelle. Biomaterials 270:120681

    Article  CAS  PubMed  Google Scholar 

  • Gref R, Luck M, Quellec P et al (2000) ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces 18:301–313

    Article  CAS  PubMed  Google Scholar 

  • Grunert P, Hudson KD, Macielak MR et al (2014) Assessment of intervertebral disc degeneration based on quantitative magnetic resonance imaging analysis: an in vivo study. Spine (Phila Pa 1976) 39:E369–378

    Google Scholar 

  • Haabeth OAW, Blake TR, McKinlay CJ et al (2018) mRNA vaccination with charge-altering releasable transporters elicits human T cell responses and cures established tumors in mice. Proc Natl Acad Sci USA 115:E9153–E9161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajj KA, Whitehead KA (2017) Tools for translation: non-viral materials for therapeutic mRNA delivery. Nat Rev Mater 2:17056

    Article  CAS  Google Scholar 

  • Holtkamp S, Kreiter S, Selmi A et al (2006) Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 108:4009–4017

    Article  CAS  PubMed  Google Scholar 

  • Inoue H, Montgomery SR, Aghdasi B et al (2015) The effect of bone morphogenetic protein-2 injection at different time points on intervertebral disk degeneration in a rat tail model. J Spinal Disord Tech 28:E35-44

    Article  PubMed  Google Scholar 

  • Iwata N, Sekiguchi M, Hattori Y et al (2013) Global brain delivery of neprilysin gene by intravascular administration of AAV vector in mice. Sci Rep 3:1472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iwata N, Tsubuki S, Takaki Y et al (2001) Metabolic regulation of brain Abeta by neprilysin. Science 292:1550–1552

    Article  CAS  PubMed  Google Scholar 

  • Johnson K, Zhu S, Tremblay MS et al (2012) A stem cell-based approach to cartilage repair. Science 336:717–721

    Article  CAS  PubMed  Google Scholar 

  • Johnston SA, Tang D-c (1994) Gene gun transfection of animal cells and genetic immunization. Meth Cell Biol 43:353–365

    Article  CAS  Google Scholar 

  • Jokerst JV, Lobovkina T, Zare RN et al (2011) Nanoparticle PEGylation for imaging and therapy. Nanomedicine (lond) 6:715–728

    Article  CAS  Google Scholar 

  • Kallen KJ, Heidenreich R, Schnee M et al (2013) A novel, disruptive vaccination technology self-adjuvanted RNActive (R) vaccines. Hum Vaccin Immunother 9:2263–2276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanasty R, Dorkin JR, Vegas A et al (2013) Delivery materials for siRNA therapeutics. Nat Mater 12:967–977

    Article  CAS  PubMed  Google Scholar 

  • Kariko K, Muramatsu H, Ludwig J et al (2011) Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res 39:e142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kariko K, Muramatsu H, Welsh FA et al (2008) Incorporation of pseudouridine Into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther 16:1833–1840

    Article  CAS  PubMed  Google Scholar 

  • Kataoka K, Matsumoto T, Yokoyama M et al (2000) Doxorubicin-loaded poly(ethylene glycol)–poly(β-benzyl-l-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance. J Control Release 64:143–153

    Article  CAS  PubMed  Google Scholar 

  • Kauffman KJ, Webber MJ, Anderson DG (2016) Materials for non-viral intracellular delivery of messenger RNA therapeutics. J Control Release 240:227–234

    Article  CAS  PubMed  Google Scholar 

  • Ke XY, Shelton L, Hu YZ et al (2020) Surface-functionalized PEGylated nanoparticles deliver messenger RNA to pulmonary immune cells. ACS Appl Mater Interfaces 12:35835–35844

    Article  CAS  PubMed  Google Scholar 

  • Kim BE, Choi SW, Shin JH et al (2018) Single-factor SOX2 mediates direct neural reprogramming of human mesenchymal stem cells via transfection of in vitro transcribed mRNA. Cell Transplant 27:1154–1167

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim BS, Naito M, Chaya H et al (2020) Noncovalent stabilization of vesicular polyion complexes with chemically modified/single-stranded oligonucleotides and PEG-b-guanidinylated polypeptides for intracavity encapsulation of effector enzymes aimed at cooperative gene knockdown. Biomacromol 21:4365–4376

    Article  CAS  Google Scholar 

  • Kim HJ, Ogura S, Otabe T et al (2019) Fine-tuning of hydrophobicity in amphiphilic polyaspartamide derivatives for rapid and transient expression of messenger RNA directed toward genome engineering in brain. ACS Cent Sci 5:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Eygeris Y, Gupta M et al (2021) Self-assembled mRNA vaccines. Adv Drug Deliv Rev 170:83–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kis Z, Kontoravdi C, Dey AK et al (2020) Rapid development and deployment of high-volume vaccines for pandemic response. J Adv Manuf Process 2:e10060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koltover I, Salditt T, Radler JO et al (1998) An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science 281:78–81

    Article  CAS  PubMed  Google Scholar 

  • Kormann MS, Hasenpusch G, Aneja MK et al (2011) Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat Biotechnol 29:154–157

    Article  CAS  PubMed  Google Scholar 

  • Kowalski PS, Rudra A, Miao L et al (2019) Delivering the messenger: advances in technologies for therapeutic mRNA delivery. Mol Ther 27:710–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubler H, Scheel B, Gnad-Vogt U et al (2015) Self-adjuvanted mRNA vaccination in advanced prostate cancer patients: a first-in-man phase I/IIa study. J Immunother Cancer 3:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Kulkarni JA, Darjuan MM, Mercer JE et al (2018) On the formation and morphology of lipid nanoparticles containing ionizable cationic lipids and siRNA. ACS Nano 12:4787–4795

    Article  CAS  PubMed  Google Scholar 

  • Kwon H, Kim M, Seo Y et al (2018) Emergence of synthetic mRNA: in vitro synthesis of mRNA and its applications in regenerative medicine. Biomaterials 156:172–193

    Article  CAS  PubMed  Google Scholar 

  • Li M, Zhao MN, Fu Y et al (2016) Enhanced intranasal delivery of mRNA vaccine by overcoming the nasal epithelial barrier via intra- and paracellular pathways. J Control Release 228:9–19

    Article  CAS  PubMed  Google Scholar 

  • Li WJ, Nicol F, Szoka FC (2004) GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery. Adv Drug Deliv Rev 56:967–985

    Article  CAS  PubMed  Google Scholar 

  • Liao JC (2016) Cell therapy using bone marrow-derived stem cell overexpressing BMP-7 for degenerative discs in a rat tail disc model. Int J Mol Sci 17:147

    Article  PubMed Central  CAS  Google Scholar 

  • Lin CY, Crowley ST, Uchida S et al (2019) Treatment of intervertebral disk disease by the administration of mRNA encoding a cartilage-anabolic transcription factor. Mol Ther Nucleic Acids 16:162–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CY, Perche F, Ikegami M et al (2016) Messenger RNA-based therapeutics for brain diseases: an animal study for augmenting clearance of beta-amyloid by intracerebral administration of neprilysin mRNA loaded in polyplex nanomicelles. J Control Release 235:268–275

    Article  CAS  PubMed  Google Scholar 

  • Linares-Fernandez S, Lacroix C, Exposito JY et al (2020) Tailoring mRNA vaccine to balance innate/adaptive immune response. Trends Mol Med 26:311–323

    Article  CAS  PubMed  Google Scholar 

  • Lonez C, Vandenbranden M, Ruysschaert JM (2012) Cationic lipids activate intracellular signaling pathways. Adv Drug Deliv Rev 64:1749–1758

    Article  CAS  PubMed  Google Scholar 

  • Lynn DM, Langer R (2000) Degradable poly (β-amino esters): synthesis, characterization, and self-assembly with plasmid DNA. J Amer Chem Soc 122:10761–10768

    Article  CAS  Google Scholar 

  • Malone RW, Felgner PL, Verma IM (1989) Cationic liposome-mediated RNA transfection. Proc Natl Acad Sci USA 86:6077–6081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsui A, Uchida S, Hayashi A et al (2018) Prolonged engraftment of transplanted hepatocytes in the liver by transient pro-survival factor supplementation using ex vivo mRNA transfection. J Control Release 285:1–11

    Article  CAS  PubMed  Google Scholar 

  • Matsui A, Uchida S, Ishii T et al (2015) Messenger RNA-based therapeutics for the treatment of apoptosis-associated diseases. Sci Rep 5:15810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy HO, McCaffrey J, McCrudden CM et al (2014) Development and characterization of self-assembling nanoparticles using a bio-inspired amphipathic peptide for gene delivery. J Control Release 189:141–149

    Article  CAS  PubMed  Google Scholar 

  • McKinlay CJ, Vargas JR, Blake TR et al (2017) Charge-altering releasable transporters (CARTs) for the delivery and release of mRNA in living animals. Proc Natl Acad Sci USA 114:E448–E456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mintzer MA, Simanek EE (2009) Nonviral vectors for gene delivery. Chem Rev 109:259–302

    Article  CAS  PubMed  Google Scholar 

  • Moghimi SM, Symonds P, Murray JC et al (2005) A two-stage poly(ethylenimine)-mediated cytotoxicity: Implications for gene transfer/therapy. Mol Ther 11:990–995

    Article  CAS  PubMed  Google Scholar 

  • Mugridge JS, Coller J, Gross JD (2018) Structural and molecular mechanisms for the control of eukaryotic 5′-3′ mRNA decay. Nat Struct Mol Biol 25:1077–1085

    Article  CAS  PubMed  Google Scholar 

  • Muttach F, Muthmann N, Rentmeister A (2017) Synthetic mRNA capping. Beilstein J Org Chem 13:2819–2832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagata S, Hamasaki T, Uetake K et al (2010) Synthesis and biological activity of artificial mRNA prepared with novel phosphorylating reagents. Nucleic Acids Res 38:7845–7857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson J, Sorensen EW, Mintri S et al (2020) Impact of mRNA chemistry and manufacturing process on innate immune activation. Sci Adv 6:eaaz6893

    Google Scholar 

  • O’Hagan DT, Ott GS, De Gregorio E et al (2012) The mechanism of action of MF59—an innately attractive adjuvant formulation. Vaccine 30:4341–4348

    Article  CAS  PubMed  Google Scholar 

  • Oberli MA, Reichmuth AM, Dorkin JR et al (2017) Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett 17:1326–1335

    Article  CAS  PubMed  Google Scholar 

  • Pallan PS, Greene EM, Jicman PA et al (2011) Unexpected origins of the enhanced pairing affinity of 2′-fluoro-modified RNA. Nucleic Acids Res 39:3482–3495

    Article  CAS  PubMed  Google Scholar 

  • Papachristofilou A, Hipp MM, Klinkhardt U et al (2019) Phase Ib evaluation of a self-adjuvanted protamine formulated mRNA-based active cancer immunotherapy, BI1361849 (CV9202), combined with local radiation treatment in patients with stage IV non-small cell lung cancer. J Immunother Cancer 7:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Pardi N, Hogan MJ, Porter FW et al (2018) mRNA vaccines—a new era in vaccinology. Nat Rev Drug Discov 17:261–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel AK, Kaczmarek JC, Bose S et al (2019a) Inhaled nanoformulated mRNA polyplexes for protein production in lung epithelium. Adv Mater 31:e1805116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patel S, Kim J, Herrera M et al (2019b) Brief update on endocytosis of nanomedicines. Adv Drug Deliv Rev 144:90–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pradere U, Halloy F, Hall J (2017) Chemical synthesis of long RNAs with terminal 5’-phosphate groups. Chemistry 23:5210–5213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu P, Ziegelhoffer P, Sun J et al (1996) Gene gun delivery of mRNA in situ results in efficient transgene expression and genetic immunization. Gene Ther 3:262–268

    CAS  PubMed  Google Scholar 

  • Sahay G, Alakhova DY, Kabanov AV (2010) Endocytosis of nanomedicines. J Control Release 145:182–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu D, Shu Y, Haque F, Abdelmawla S et al (2011) Thermodynamically stable RNA three-way junction for constructing multifunctional nanoparticles for delivery of therapeutics. Nat Nanotechnol 6:658–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stadler CR, Bahr-Mahmud H, Celik L et al (2017) Elimination of large tumors in mice by mRNA-encoded bispecific antibodies. Nat Med 23:815–817

    Article  CAS  PubMed  Google Scholar 

  • Tan L, Zheng T, Li M et al (2020) Optimization of an mRNA vaccine assisted with cyclodextrin-polyethyleneimine conjugates. Drug Deliv Transl Res 10:678–689

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Sakurai Y, Anindita J et al (2020) Development of lipid-like materials for RNA delivery based on intracellular environment-responsive membrane destabilization and spontaneous collapse. Adv Drug Deliv Rev 154–155:210–226

    Article  PubMed  CAS  Google Scholar 

  • Tavernier G, Andries O, Demeester J et al (2011) mRNA as gene therapeutic: how to control protein expression. J Control Release 150:238–247

    Article  CAS  PubMed  Google Scholar 

  • Tsai TF (2013) Fluad(R)-MF59(R)-adjuvanted influenza vaccine in older adults. Infect Chemother 45:159–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida H, Itaka K, Nomoto T et al (2014) Modulated protonation of side chain aminoethylene repeats in N-substituted polyaspartamides promotes mRNA transfection. J Am Chem Soc 136:12396–12405

    Article  CAS  PubMed  Google Scholar 

  • Uchida H, Miyata K, Oba M et al (2011) Odd-even effect of repeating aminoethylene units in the side chain of N-substituted polyaspartamides on gene transfection profiles. J Am Chem Soc 133:15524–15532

    Article  CAS  PubMed  Google Scholar 

  • Uchida S, Hayakawa K, Ogata T et al (2016) Treatment of spinal cord injury by an advanced cell transplantation technology using brain-derived neurotrophic factor-transfected mesenchymal stem cell spheroids. Biomaterials 109:1–11

    Article  CAS  PubMed  Google Scholar 

  • Uchida S, Itaka K, Uchida H et al (2013) In vivo messenger RNA introduction into the central nervous system using polyplex nanomicelle. PLoS ONE 8:e56220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida S, Kataoka K (2019) Design concepts of polyplex micelles for in vivo therapeutic delivery of plasmid DNA and messenger RNA. J Biomed Mater Res A 107:978–990

    Article  CAS  PubMed  Google Scholar 

  • Uchida S, Kinoh H, Ishii T et al (2015) Systemic delivery of messenger RNA for the treatment of pancreatic cancer using polyplex nanomicelles with a cholesterol moiety. Biomaterials 82:221–228

    Article  PubMed  CAS  Google Scholar 

  • Udhayakumar VK, De Beuckelaer A, McCaffrey J et al (2017) Arginine-rich peptide-based mRNA nanocomplexes efficiently instigate cytotoxic T cell immunity dependent on the amphipathic organization of the peptide. Adv Healthc Mater 6(13)

    Google Scholar 

  • Ulkoski D, Bak A, Wilson JT et al (2019) Recent advances in polymeric materials for the delivery of RNA therapeutics. Expert Opin Drug Deliv 16:1149–1167

    Article  CAS  PubMed  Google Scholar 

  • Urban JP, Roberts S (2003) Degeneration of the intervertebral disc. Arthritis Res Ther 5:120

    Article  PubMed  PubMed Central  Google Scholar 

  • Utzinger M, Jarzebinska A, Haag N et al (2017) cmRNA/lipoplex encapsulation in PLGA microspheres enables transfection via calcium phosphate cement (CPC)/PLGA composites. J Control Release 249:143–149

    Article  CAS  PubMed  Google Scholar 

  • Vaidyanathan S, Azizian KT, Haque AKMA et al (2018) Uridine depletion and chemical modification increase Cas9 mRNA activity and reduce immunogenicity without HPLC purification. Mol Ther Nucleic Acids 12:530–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van den Brand D, Gorris MAJ, van Asbeck AH et al (2019) Peptide-mediated delivery of therapeutic mRNA in ovarian cancer. Eur J Pharm Biopharm 141:180–190

    Article  PubMed  CAS  Google Scholar 

  • Van Pham P, Thi-My Nguyen P, Thai-Quynh Nguyen A et al (2014) Improved differentiation of umbilical cord blood-derived mesenchymal stem cells into insulin-producing cells by PDX-1 mRNA transfection. Differentiation 87:200–208

    Article  CAS  PubMed  Google Scholar 

  • Wadhwa A, Aljabbari A, Lokras A et al (2020) Opportunities and challenges in the delivery of mRNA-based vaccines. Pharmaceutics 12:102

    Article  CAS  PubMed Central  Google Scholar 

  • Warren L, Ni Y, Wang J et al (2012) Feeder-free derivation of human induced pluripotent stem cells with messenger RNA. Sci Rep 2:657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weide B, Pascolo S, Scheel B et al (2009) Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients. J Immunother 32:498–507

    Article  CAS  PubMed  Google Scholar 

  • Xiao ZY, Levy-Nissenbaum E, Alexis F et al (2012) Engineering of targeted nanoparticles for cancer therapy using internalizing aptamers isolated by cell-uptake selection. ACS Nano 6:696–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang ST, Kreutzberger AJB, Lee J et al (2016) The role of cholesterol in membrane fusion. Chem Phys Lipids 199:136–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yano F, Hojo H, Ohba S et al (2013) A novel disease-modifying osteoarthritis drug candidate targeting Runx1. Ann Rheum Dis 72:748–753

    Article  CAS  PubMed  Google Scholar 

  • Yoshinaga N, Naito M, Tachihara Y et al (2021) PEGylation of mRNA by hybridization of complementary PEG-RNA oligonucleotides stabilizes mRNA without using cationic materials. Pharmaceutics 13:800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshinaga N, Uchida S, Naito M et al (2019) Induced packaging of mRNA into polyplex micelles by regulated hybridization with a small number of cholesteryl RNA oligonucleotides directed enhanced in vivo transfection. Biomaterials 197:255–267

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Delawary M, Huang P et al (2021) IL-10 mRNA engineered MSCs demonstrate enhanced anti-inflammation in an acute GvHD model. Cells 10(11)

    Google Scholar 

  • Zhang W, De La Vega RE, Coenen MJ et al (2019) An improved, chemically modified RNA encoding BMP-2 enhances osteogenesis in vitro and in vivo. Tissue Eng Part A 25:131–144

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Ms. Zhu-Yin Chen and the Medical Research Core Facilities, Office of Research & Development at China Medical University, Taichung, Taiwan, R.O.C., for their assistance in experiments and data analysis.

Grant Support

This work was financially supported by the Minister of Science and Technology (MOST 108–2221-E-039–006-MY3, MOST 107–2314-B-039–023, MOST 107–2622-E-039–003-CC1 and MOST 108–2622-E-039–002-CC1) and China Medical University (CMU110-MF-83). However, the funding sources had no involvement in study design, the collection, analysis, and interpretation of data, the report’s writing, and the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin-Yu Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsou, HK., Chang, CC., Maeda, T., Lin, CY. (2022). Preparation of Messenger RNA-Loaded Nanomedicine Applied on Tissue Engineering and Regenerative Medicine. In: Jurga, S., Barciszewski, J. (eds) Messenger RNA Therapeutics. RNA Technologies, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-031-08415-7_18

Download citation

Publish with us

Policies and ethics