Skip to main content

Spectral Induced Polarization (SIP) Imaging for the Characterization of Hydrocarbon Contaminant Plumes

  • Chapter
  • First Online:
Instrumentation and Measurement Technologies for Water Cycle Management

Part of the book series: Springer Water ((SPWA))

  • 495 Accesses

Abstract

We review the application of the Spectral Induced Polarization (SIP) imaging method to delineate the geometry of hydrocarbon contaminant plumes and monitor the effect of remediation measures. In the first two sections, we present a brief introduction into the SIP method and discuss the electrical properties of the rocks and soils. In the third section, we offer a detailed revision of the literature to illustrate the broad range of electrical properties of fresh and mature contaminant plumes. In the fourth and fifth section, we discuss challenges and good practices for collection, processing and interpretation of SIP imaging data, and illustrate these steps with a real-case example regarding the characterization of a benzene plume. Along this case study, we demonstrate how the occurrence of benzene in the dissolved plume and in free-phase changes the electrical conductivity and polarization properties of the contaminated subsurface materials. A second case study deals with SIP monitoring results obtained along the injection of zero-valent iron particles for the remediation of a TCE (Trichloroethylene) plume. This example illustrates the advantages of the SIP method to evidence changes in the pore-space, such as clogging and fracking, which may affect the effectivity of remediation measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aal GZA, Slater LD, Atekwana EA (2006) Induced-polarization measurements on unconsolidated sediments from a site of active hydrocarbon biodegradation. Geophysics 71(2):H13–H24

    Article  Google Scholar 

  2. Abdel Aal GZ, Atekwana EA (2014) Spectral induced polarization (SIP) response of biodegraded oil in porous media. Geophys J Int 196(2):804–817

    Article  ADS  CAS  Google Scholar 

  3. Abdel Aal GZ, Atekwana EA, Slater LD, Atekwana EA (2004) Effects of microbial processes on electrolytic and interfacial electrical properties of unconsolidated sediments. Geophys Res Lett 31(12)

    Google Scholar 

  4. Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans AIME 146(01):54–62

    Article  Google Scholar 

  5. Atekwana EA, Atekwana EA (2010) Geophysical signatures of microbial activity at hydrocarbon contaminated sites: a review. Surv Geophys 31:247–283

    Article  ADS  Google Scholar 

  6. Benson AK, Payne KL, Stubben MA (1997) Mapping groundwater contamination using dc resistivity and VLF geophysical methods—a case study. Geophysics 62(1):80–86

    Article  ADS  Google Scholar 

  7. Binley A, Slater L (2020) Resistivity and induced polarization: theory and applications to the near-surface earth. Cambridge University Press

    Google Scholar 

  8. Blanchy G, Saneiyan S, Boyd J, McLachlan P, Binley A (2020) ResIPy, an intuitive open source software for complex geoelectrical inversion/modeling. Comput Geosci 137:104423

    Article  Google Scholar 

  9. Blondel A, Schmutz M, Franceschi M, Tichané F, Carles M (2014) Temporal evolution of the geoelectrical response on a hydrocarbon contaminated site. J Appl Geophys 103:161–171

    Article  Google Scholar 

  10. Bücker M, Flores Orozco A, Hördt A, Kemna A (2017) An analytical membrane-polarization model to predict the complex conductivity signature of immiscible liquid hydrocarbon contaminants. Near Surf Geophys 15(6):547–562

    Article  Google Scholar 

  11. Bücker M, Flores Orozco A, Kemna A (2018) Electrochemical polarization around metallic particles—Part 1: the role of diffuse-layer and volume-diffusion relaxation. Geophysics 83(4):E203–E217

    Article  Google Scholar 

  12. Bücker M, Flores Orozco A, Undorf S, Kemna A (2019) On the role of stern-and diffuse-layer polarization mechanisms in porous media. J Geophys Res: Solid Earth 124(6):5656–5677

    Article  ADS  Google Scholar 

  13. Bücker M, Hördt A (2013) Analytical modelling of membrane polarization with explicit parametrization of pore radii and the electrical double layer. Geophys J Int 194(2):804–813

    Article  ADS  Google Scholar 

  14. Bücker M, Undorf S, Flores Orozco A, Kemna A (2019) Electrochemical polarization around metallic particles—Part 2: the role of diffuse surface charge. Geophysics 84(2):E57–E73

    Article  ADS  Google Scholar 

  15. Cardarelli E, Di Filippo G (2009) Electrical resistivity and induced polarization tomography in identifying the plume of chlorinated hydrocarbons in sedimentary formation: a case study in Rho (Milan—Italy). Waste Manage Res 27(6):595–602

    Article  CAS  Google Scholar 

  16. De Carlo L, Perri MT, Caputo MC, Deiana R, Vurro M, Cassiani G (2013) Characterization of a dismissed landfill via electrical resistivity tomography and mise-à-la-masse method. J Appl Geophys 98:1–10. https://doi.org/10.1016/j.jappgeo.2013.07.010

    Article  Google Scholar 

  17. Cassiani G, Kemna A, Villa A, Zimmermann E (2009) Spectral induced polarization for the characterization of free-phase hydrocarbon contamination of sediments with low clay content. Near Surf Geophys 7(5–6):547–562

    Article  Google Scholar 

  18. Dahlin T, Leroux V, Nissen J (2002) Measuring techniques in induced polarisation imaging. J Appl Geophys 50(3):279–298

    Article  Google Scholar 

  19. Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int

    Google Scholar 

  20. Deceuster J, Kaufmann O (2012) Improving the delineation of hydrocarbon-impacted soils and water through induced polarization (IP) tomographies: a field study at an industrial waste land. J Contam Hydrol 136:25–42

    Article  PubMed  Google Scholar 

  21. Doetsch J, Ingeman-Nielsen T, Christiansen AV, Fiandaca G, Auken E, Elberling B (2015) Direct current (DC) resistivity and induced polarization (IP) monitoring of active layer dynamics at high temporal resolution. Cold Reg Sci Technol 119:16–28

    Article  Google Scholar 

  22. Fiandaca G, Auken E, Christiansen AV, Gazoty A (2012) Full waveform modelling of time domain induced polarization. Geophysics 71:G43–G51

    Google Scholar 

  23. Flores Orozco A, Aigner L, Gallistl J (2021) Investigation of cable effects in spectral induced polarization imaging at the field scale using multicore and coaxial cables. Geophysics 86(1):E59–E75

    Article  ADS  Google Scholar 

  24. Flores Orozco A, Bücker M, Steiner M, Malet JP (2018) Complex-conductivity imaging for the understanding of landslide architecture. Eng Geol 243:241–252

    Article  Google Scholar 

  25. Flores Orozco A, Ciampi P, Katona T, Censini M, Papini MP, Deidda GP, Cassiani G (2021) Delineation of hydrocarbon contaminants with multi-frequency complex conductivity imaging. Sci Total Environ 768:144997

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Flores Orozco A, Kemna A, Binley A, Cassiani G (2019) Analysis of time-lapse data error in complex conductivity imaging to alleviate anthropogenic noise for site characterization. Geophysics 84(2):B181–B193

    Article  Google Scholar 

  27. Flores Orozco A, Kemna A, Oberdörster C, Zschornack L, Leven C, Dietrich P, Weiss H (2012) Delineation of subsurface hydrocarbon contamination at a former hydrogenation plant using spectral induced polarization imaging. J Contam Hydrol 136:131–144

    Article  PubMed  Google Scholar 

  28. Flores Orozco A, Kemna A, Zimmermann E (2012) Data error quantification in spectral induced polarization imaging. Geophysics 77(3):E227–E237

    Article  Google Scholar 

  29. Flores Orozco A, Micić V, Bücker M, Gallistl J, Hofmann T, Nguyen F (2019) Complex-conductivity monitoring to delineate aquifer pore clogging during nanoparticles injection. Geophys J Int 218(3):1838–1852

    Article  ADS  Google Scholar 

  30. Flores Orozco A, Velimirovic M, Tosco T, Kemna A, Sapion H, Klaas N, Sethi R, Bastiaens L (2015) Monitoring the injection of microscale zerovalent iron particles for groundwater remediation by means of complex electrical conductivity imaging. Environ Sci Technol 49(9):5593–5600

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Flores Orozco A, Williams KH, Kemna A (2013) Time-lapse spectral induced polarization imaging of stimulated uranium bioremediation. Near Surf Geophys 11(5):531–544

    Article  Google Scholar 

  32. Flores Orozco A, Williams KH, Long PE, Hubbard SS, Kemna A (2011) Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of an uranium‐contaminated aquifer. J Geophys Res Biogeosci 116(G3)

    Google Scholar 

  33. Fritsche W, Hofrichter M (2000) Aerobic degradationby microorganisms. In: Klein J (ed) Environmental processes—soil decontamination. Wiley-VCH, Weinheim, Germany, pp 146–155

    Google Scholar 

  34. Ghattas AK, Fischer F, Wick A, Ternes TA (2017) Anaerobic biodegradation of (emerging) organic contaminants in the aquatic environment. Water Res 116:268–295

    Article  CAS  PubMed  Google Scholar 

  35. Glover PWJ (2015) 11.04–geophysical properties of the near surface earth: electrical properties. Treatise Geophys 89–137

    Google Scholar 

  36. Grieger KD, Fjordbøge A, Hartmann NB, Eriksson E, Bjerg PL, Baun A (2010) Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? J Contam Hydrol 118(3–4):165–183

    Article  CAS  PubMed  Google Scholar 

  37. Günther T, Martin T (2016) Spectral two-dimensional inversion of frequency-domain induced polarization data from a mining slag heap. J Appl Geophys 135:436–448

    Article  Google Scholar 

  38. Hort RD, Revil A, Munakata-Marr J, Mao D (2015) Evaluating the potential for quantitative monitoring of in situ chemical oxidation of aqueous-phase TCE using in-phase and quadrature electrical conductivity. Water Resour Res 51(7):5239–5259

    Article  ADS  CAS  Google Scholar 

  39. Hördt A, Bairlein K, Bielefeld A, Bücker M, Kuhn E, Nordsiek S, Stebner H (2016) The dependence of induced polarization on fluid salinity and pH, studied with an extended model of membrane polarization. J Appl Geophys 135:408–417

    Article  Google Scholar 

  40. Johansson S, Fiandaca G, Dahlin T (2015) Influence of non-aqueous phase liquid configuration on induced polarization parameters: conceptual models applied to a time-domain field case study. J Appl Geophys 123:295–309

    Article  Google Scholar 

  41. Johnson TC, Thomle J (2018) 3-D decoupled inversion of complex conductivity data in the real number domain. Geophys J Int 212(1):284–296

    Article  ADS  Google Scholar 

  42. Karaoulis M, Revil A, Tsourlos P, Werkema DD, Minsley BJ (2013) IP4DI: a software for time-lapse 2D/3D DC-resistivity and induced polarization tomography. Comput Geosci 54:164–170

    Article  ADS  Google Scholar 

  43. Kaufmann O, Deceuster J (2007) A 3D resistivity tomography study of a LNAPL plume near a gas station at Brugelette (Belgium). J Environ Eng Geophys 12(2):207–219

    Article  Google Scholar 

  44. Kemna A (2000) Tomographic inversion of complex resistivity—theory and application. Ruhr-University of Bochum, Ph.D.

    Google Scholar 

  45. Kemna A, Binley A, Cassiani G, Niederleithinger E, Revil A, Slater L, Williams KH, Flores Orozco A, Haegel FH, Hördt A, Kruschwitz S (2012) An overview of the spectral induced polarization method for near-surface applications. Near Surf Geophys 10(6):453–468

    Article  Google Scholar 

  46. Kim B, Nam MJ, Kim HJ (2018) Inversion of time-domain induced polarization data based on time-lapse concept. J Appl Geophys 152:26–37

    Article  Google Scholar 

  47. Kłonowski MR, Breedveld GD, Aagaard P (2008) Spatial and temporal changes of jet fuel contamination in an unconfined sandy aquifer. Water Air Soil Pollut 188(1–4):9–30

    Article  ADS  Google Scholar 

  48. LaBrecque D, Daily W (2008) Assessment of measurement errors for galvanic-resistivity electrodes of different composition. Geophysics 73(2):F55–F64

    Article  Google Scholar 

  49. LaBrecque DJ, Miletto M, Daily W, Ramirez A, Owen E (1996) The effects of noise on Occam’s inversion of resistivity tomography data. Geophysics 61(2):538–548

    Article  ADS  Google Scholar 

  50. Lesparre N, Robert T, Nguyen F, Boyle A, Hermans T (2019) 4D electrical resistivity tomography (ERT) for aquifer thermal energy storage monitoring. Geothermics 77:368–382

    Article  Google Scholar 

  51. Löser C, Seidel H, Zehnsdorf A, Stottmeister U (1998) Microbial degradation of hydrocarbons in soil during aerobic/anaerobic changes and under purely aerobic conditions. Appl Microbiol Biotechnol 49(5):631–636

    Article  Google Scholar 

  52. Martin T, Günther T, Flores Orozco A, Dahlin T (2020) Evaluation of spectral induced polarization field measurements in time and frequency domain. J Appl Geophys 180:104141

    Article  Google Scholar 

  53. Maurya PK, Fiandaca G, Christiansen AV, Auken E (2018) Field-scale comparison of frequency-and time-domain spectral induced polarization. Geophys J Int 214(2):1441–1466

    Article  ADS  CAS  Google Scholar 

  54. Mewafy FM, Werkema DD Jr, Atekwana EA, Slater LD, Aal GA, Revil A, Ntarlagiannis D (2013) Evidence that bio-metallic mineral precipitation enhances the complex conductivity response at a hydrocarbon contaminated site. J Appl Geophys 98:113–123

    Article  Google Scholar 

  55. Nguyen F, Ghose R, Isunza Manrique I, Robert T, Dumont G (2018) Managing past landfills for future site development: a review of the contribution of geophysical methods. In: Proceedings of the 4th international symposium on enhanced landfill mining, pp 27–36

    Google Scholar 

  56. Olhoeft GR (1985) Low-frequency electrical properties. Geophysics 50(12):2492–2503

    Article  ADS  Google Scholar 

  57. Pelton WH, Ward SH, Hallof PG, Sill WR, Nelson PH (1978) Mineral discrimination and removal of inductive coupling with multifrequency IP. Geophysics 43(3):588–609

    Article  ADS  Google Scholar 

  58. Placencia-Gómez E, Parviainen A, Hokkanen T, Loukola-Ruskeeniemi K (2010) Integrated geophysical and geochemical study on AMD generation at the Haveri Au–Cu mine tailings, SW Finland. Environ Earth Sci 61(7):1435–1447

    Article  Google Scholar 

  59. Revil A, Coperey A, Mao D, Abdulsamad F, Ghorbani A, Rossi M, Gasquet D (2018) Induced polarization response of porous media with metallic particles—Part 8: influence of temperature and salinity. Geophysics 83(6):E435–E456

    Article  ADS  Google Scholar 

  60. Revil A, Florsch N (2010) Determination of permeability from spectral induced polarization in granular media. Geophys J Int 181(3):1480–1498

    ADS  Google Scholar 

  61. Revil A, Schmutz M, Batzle ML (2011) Influence of oil wettability upon spectral induced polarization of oil-bearing sands. Geophysics 76(5):A31–A36

    Article  ADS  Google Scholar 

  62. Revil A, Skold M (2011) Salinity dependence of spectral induced polarization in sands and sandstones. Geophys J Int 187(2):813–824

    Article  ADS  Google Scholar 

  63. Rücker C, Günther T, Wagner FM (2017) pyGIMLi: an open-source library for modelling and inversion in geophysics. Comput Geosci 109:106–123

    Article  ADS  Google Scholar 

  64. Sauck WA (2000) A model for the resistivity structure of LNAPL plumes and their environs in sandy sediments. J Appl Geophys 44(2–3):151–165

    Article  Google Scholar 

  65. Schmutz M, Revil A, Vaudelet P, Batzle M, Viñao PF, Werkema DD (2010) Influence of oil saturation upon spectral induced polarization of oil-bearing sands. Geophys J Int 183(1):211–224

    Article  ADS  Google Scholar 

  66. Schmutz M, Blondel A, Revil A (2012) Saturation dependence of the quadrature conductivity of oil‐bearing sands. Geophys Res Lett 39(3)

    Google Scholar 

  67. Schwartz N, Huisman JA, Furman A (2012) The effect of NAPL on the electrical properties of unsaturated porous media. Geophys J Int 188(3):1007–1011

    Article  ADS  Google Scholar 

  68. Schwartz N, Furman A (2012) Spectral induced polarization signature of soil contaminated by organic pollutant: experiment and modeling. J Geophys Res Solid Earth 117(B10)

    Google Scholar 

  69. Shefer I, Schwartz N, Furman A (2013) The effect of free-phase NAPL on the spectral induced polarization signature of variably saturated soil. Water Resour Res 49(10):6229–6237

    Article  ADS  Google Scholar 

  70. Slater L, Binley A (2006) Synthetic and field-based electrical imaging of a zerovalent iron barrier: implications for monitoring long-term barrier performance. Geophysics 71(5):B129–B137

    Article  Google Scholar 

  71. Soupios P, Ntarlagiannis D (2017) Characterization and monitoring of solid waste disposal sites using geophysical methods: current applications and novel trends. In: Modelling trends in solid and hazardous waste management. Springer, Singapore, pp 75–103. https://doi.org/10.1007/978-981-10-2410-8_5

  72. Sparrenbom CJ, Åkesson S, Johansson S, Hagerberg D, Dahlin T (2017) Investigation of chlorinated solvent pollution with resistivity and induced polarization. Sci Total Environ 575:767–778

    Article  ADS  CAS  PubMed  Google Scholar 

  73. Sumner JS (1976) Principles of induced polarization for geophysical prospecting. Elsevier, Amsterdam

    Google Scholar 

  74. Tsourlos P, Vargemezis GN, Fikos I, Tsokas GN (2014) DC geoelectrical methods applied to landfill investigation: case studies from Greece. First Break 32(8):81–89

    Article  Google Scholar 

  75. Ustra A, Slater L, Ntarlagiannis D, Elis V (2012) Spectral induced polarization (SIP) signatures of clayey soils containing toluene. Near Surf Geophys 10(6):503–515

    Article  Google Scholar 

  76. Velimirovic M, Tosco T, Uyttebroek M, Luna M, Gastone F, De Boer C, Klaas N, Sapion H, Eisenmann H, Larsson PO, Braun J (2014) Field assessment of guar gum stabilized microscale zerovalent iron particles for in-situ remediation of 1, 1, 1-trichloroethane. Journal Contam Hydrol 164:88–99

    Google Scholar 

  77. Wang TP, Chen CC, Tong LT, Chang PY, Chen YC, Dong TH, Liu HC, Lin CP, Yang KH, Ho CJ, Cheng SN (2015) Applying FDEM, ERT and GPR at a site with soil contamination: a case study. J Appl Geophys 121:21–30

    Article  ADS  Google Scholar 

  78. Weller A, Zhang Z, Slater L (2015) High-salinity polarization of sandstones. Geophysics 80(3):D309–D318

    Article  Google Scholar 

  79. Yang C, Liu S, Feng Y, Yang H (2018) Influence of electrode polarization on the potential of DC electrical exploration. J Appl Geophys 149:63–76

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrián Flores-Orozco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Flores-Orozco, A., Bücker, M. (2022). Spectral Induced Polarization (SIP) Imaging for the Characterization of Hydrocarbon Contaminant Plumes. In: Di Mauro, A., Scozzari, A., Soldovieri, F. (eds) Instrumentation and Measurement Technologies for Water Cycle Management . Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-031-08262-7_15

Download citation

Publish with us

Policies and ethics