Skip to main content

Improving Water Quality and Security with Advanced Sensors and Indirect Water Sensing Methods

  • Chapter
  • First Online:
Instrumentation and Measurement Technologies for Water Cycle Management

Abstract

As far as Water is concerned, a lot of new directives and world concerns highlight among others the need for using ICT technologies, the global healthcare issues, the demand for fresh water, the food/beverage quality and safety, the environmental protection and the security strategies to reduce intentional contamination, all of the above having worldwide massive economic, natural and social impacts. However, despite an increasing demand for adaptability, compacity and performances at ever decreasing costs, the vast majority of water network monitoring systems remains based on sensor nodes with predefined and vertical applicative goals hindering interoperability and increasing costs (OPEX and CAPEX) for deploying new and added value services. Innovative technological products could answer the following acute needs in the field. This chapter introduce advance research works in sensing within two H2020 EU projects: the aqua3S project addressing sensors for Water Security purposes and LOTUS addressing low-cost multiparameter sensors for water quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    WHO assembly notes: http://www.who.int/mediacentre/events/2011/wha64/journal/en/index5.html, http://www.who.int/water_sanitation_health/en/.

  2. 2.

    World Health Organization and International Water Association brochure: “A Roadmap to Support Country-Level Implementation of Water Safety Plans” (2010).

  3. 3.

    European Water Directive, http://ec.europa.eu/environment/water/index_en.htm.

  4. 4.

    Digital Single Market for Water Services Action Plan, https://ec.europa.eu/futurium/en/system/files/ged/ict4wateractionplan2018.pdf.

  5. 5.

    https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en.

  6. 6.

    https://watereurope.eu/.

  7. 7.

    https://www.fiware4water.eu/.

  8. 8.

    https://aqua3s.eu/.

  9. 9.

    https://wiki.openstreetmap.org/wiki/API.

  10. 10.

    http://www.proteus-sensor.eu/.

  11. 11.

    https://www.lotus-india.eu/.

  12. 12.

    https://www.fiware4water.eu/.

  13. 13.

    https://satt-paris-saclay.fr/vitrine-technologique/micado/.

  14. 14.

    https://sense-city.ifsttar.fr/.

  15. 15.

    MODBUS is a de facto market standard on communication bus, and it the word originates historically from"modicum communication bus".

  16. 16.

    https://www.soterias.solutions/.

References

  1. Quevauviller P (2005) Emerging tools for monitoring water quality. J Environ Monit 7:545

    Article  CAS  Google Scholar 

  2. Raich J (213) Review of sensors to monitor water quality. European reference network for critical infrastructure protection (ERNCIP) project

    Google Scholar 

  3. Cämmerer M, Mayer T, Penzel S, Rudolph M, Borsdorf H (2020) Application of low-cost electrochemical sensors to aqueous systems to allow automated determination of nh3 and h2s in water. Sensors 20(10):2814

    Article  ADS  PubMed Central  Google Scholar 

  4. Yaroshenko I, Kirsanov D, Marjanovic M, Lieberzeit PA, Korostynska O, Mason A, Frau I, Legin A (2020) Real-time wáter quality monitoring with chemical sensors. Sensors 20(12):3432

    Article  ADS  CAS  PubMed Central  Google Scholar 

  5. Carras M, Aoust G, Maisons G, Brun M, Spitz O, Grillot F (2019) Quantum cascade laser technology and applications at mirsense, from spectroscopy to chaotic communication

    Google Scholar 

  6. Gorrochategui P, Aoust G (2020) MultiSense OEM gas analyzer demo kit general user’s guide. mirSense

    Google Scholar 

  7. Wörhoff K, Heideman RG, Leinse A, Hoekman M (2015) Triplex: a versatile dielectric photonic platform. Adv Opt Technol 4(2):189–207

    ADS  Google Scholar 

  8. Gounaridis L, Groumas P, Schreuder E, Heideman R, Katopodis V, Kouloumentas C, Avramopoulos H (2015) Design of grating couplers and mmi couplers on the triplex platform enabling ultra-compact photonic-based biosensors. Sens Actuators B: Chem 209:1057–1063

    Article  CAS  Google Scholar 

  9. Gounaridis L, Groumas P, Schreuder E, Tsokos C, Mylonas E, Raptakis A, Heideman R, Avramopoulos H, Kouloumentas C (2019) Design of ultra-compact multimode interference (mmi) couplers and high efficiency grating couplers in triplex platform as part of a photonic-based sensor. In: Integrated optics: devices, materials, and technologies XXIII. vol 10921. International Society for Optics and Photonics, p 1092127

    Google Scholar 

  10. Gounaridis L, Groumas P, Schreuder E, Heideman R, Avramopoulos H, Kouloumentas C (2016) New set of design rules for resonant refractive index sensors enabled by FFT based processing of the measurement data. Optics Exp 24(7):7611–7632

    Article  ADS  Google Scholar 

  11. Gounaridis L, Groumas P, Schreuder E, Tsekenis G, Marousis A, Heideman R, Avramopoulos H, Kouloumentas C (2017) High performance refractive index sensor based on low q-factor ring resonators and FFT processing of wavelength scanning data. Opt Exp 25(7):7483–7495

    Article  ADS  CAS  Google Scholar 

  12. Organization WH et al (2017) Guidelines for drinking-water quality: incorporating first addendum (2017)

    Google Scholar 

  13. Apostolakis A, Pereira MF (2019) Controlling the harmonic conversion efficiency in semiconductor superlattices by interface roughness design. AIP Adv 9(1):015022

    Article  ADS  Google Scholar 

  14. Apostolakis A, Pereira MF (2019) Potential and limits of superlattice multipliers coupled to different input power sources. J Nanophoton 13(3):1–11. https://doi.org/10.1117/1.JNP.13.036017

    Article  Google Scholar 

  15. Apostolakis A, Pereira MF (2020) Superlattice nonlinearities for gigahertz-terahertz generation in harmonic multipliers. Nanophotonics 9(12):3941–3952

    Article  Google Scholar 

  16. Pereira MF, Zubelli JP, Winge D, Wacker A, Rodrigues AS, Anfertev V, Vaks V (2017) Theory and measurements of harmonic generation in semiconductor superlattices with applications in the 100 ghz to 1 thz range. Phys Rev B 96. https://doi.org/10.1103/PhysRevB.96.045306

  17. Pereira MF, Anfertev VA, Zubelli JP, Vaks VL (2017) Terahertz generation by gigahertz multiplication in superlattices. J Nanophoton 11(4):1–6

    Article  Google Scholar 

  18. Pereira M, Anfertev V, Shevchenko Y, Vaks V (2020) Giant controllable gigahertz to terahertz nonlinearities in superlattices. Sci Rep 10(1):1–9

    Article  Google Scholar 

  19. Dhillon S, Vitiello M, Linfield E, Davies A, Hoffmann MC, Booske J, Paoloni C, Gensch M, Weightman P, Williams G et al (2017) The 2017 terahertz science and technology roadmap. J Phys D: Appl Phys 50(4):043001

    Article  ADS  Google Scholar 

  20. Kosterev AA, Tittel FK, Serebryakov DV, Malinovsky AL, Morozov IV (2005) Applications of quartz tuning forks in spectroscopic gas sensing. Rev Sci Inst 76(4):043105

    Article  ADS  Google Scholar 

  21. Lyakh A, Maulini R, Tsekoun A, Go R, Patel CKN (2012) Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency. Opt Exp 20(22):24272–24279

    Article  ADS  CAS  Google Scholar 

  22. Pereira M Jr, Lee SC, Wacker A (2004) Controlling many-body effects in the midinfrared gain and terahertz absorption of quantum cascade laser structures. Phys Rev B 69(20):205310

    Article  ADS  Google Scholar 

  23. Schmielau T, Pereira M Jr (2009) Nonequilibrium many body theory for quantum transport in terahertz quantum cascade lasers. Appl Phys Lett 95(23):231111

    Article  ADS  Google Scholar 

  24. Lee SC, Wacker A (2002) Nonequilibrium green’s function theory for transport and gain properties of quantum cascade structures. Phys Rev B 66(24):245314

    Article  ADS  Google Scholar 

  25. Iglewicz B, Hoaglin DC (1993) How to detect and handle outliers, vol 16. Asq Press

    Google Scholar 

  26. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

  27. Boididou C, Papadopoulos S, Apostolidis L, Kompatsiaris Y (2017) Learning to detect misleading content on twitter. In: Proceedings of the 2017 ACM on international conference on multimedia retrieval, pp 278–286

    Google Scholar 

  28. Boididou C, Papadopoulos S, Zampoglou M, Apostolidis L, Papadopoulou O, Kompatsiaris Y (2018) Detection and visualization of misleading content on twitter. Int J Multimedia Inf Retr 7(1):71–86

    Article  Google Scholar 

  29. Lample G, Ballesteros M, Subramanian S, Kawakami K, Dyer C (2016) Neural architectures for named entity recognition. ArXiv preprint arXiv:1603.01360

  30. Directive 2000/60/ec of the european parliament and of the council establishing a framework for community action in the field of water policy (Oct 2000), http://data.europa.eu/eli/dir/2000/60/2014-11-20

  31. Kruse P (2018) Review on water quality sensors. J Phys D: Appl Phys 51(20):203002

    Article  ADS  Google Scholar 

  32. Kuo YM, Liu W, Zhao E, Li R, Muñoz-Carpena R (2019) Water quality variability in the middle and down streams of Han river under the influence of the middle route of south-north water diversion project, China. J Hydrol 569:218–229. https://doi.org/10.1016/j.jhydrol.2018.12.001. http://www.sciencedirect.com/science/article/pii/S0022169418309296

  33. Shi B, Bach PM, Lintern A, Zhang K, Coleman RA, Metzeling L, McCarthy DT, Deletic A (2019) Understanding spatiotemporal variability of in-stream water quality in urban environments–a case study of Melbourne, Australia. J Environ Manage 246:203–213. https://doi.org/10.1016/j.jenvman.2019.06.006

    Article  CAS  PubMed  Google Scholar 

  34. Singh KR, Dutta R, Kalamdhad AS, Kumar B (2019) An investigation on water quality variability and identification of ideal monitoring locations by using entropy based disorder indices. Sci Total Environ 647:1444–1455. https://doi.org/10.1016/j.scitotenv.2018.07.463

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Coquery M, Morin A, Bécue A, Lepot B (2005) Priority substances of the European water framework directive: analytical challenges in monitoring water quality. TrAC Trends Anal Chem 24(2):117–127. https://doi.org/10.1016/j.trac.2004.11.004, http://www.sciencedirect.com/science/article/pii/S0165993604030894

  36. Thompson J, Pelc C, Jordan T (2020) Water quality sampling methods may bias evaluations of watershed management practices. Sci Total Environ 142739. https://doi.org/10.1016/j.scitotenv.2020.142739, http://www.sciencedirect.com/science/article/pii/S0048969720362689

  37. Adu-Manu KS, Tapparello C, Heinzelman W, Katsriku FA, Abdulai JD (2017) Water quality monitoring using wireless sensor networks: current trends and future research directions. ACM Trans Sens Netw (TOSN) 13(1):1–41

    Article  Google Scholar 

  38. Vikesland PJ (2018) Nanosensors for water quality monitoring. Nat Nanotechnol 13(8):651–660

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Schroeder V, Savagatrup S, He M, Lin S, Swager TM (2019) Carbon nanotube chemical sensors. Chem Rev 119(1):599–663. https://doi.org/10.1021/acs.chemrev.8b00340

    Article  CAS  PubMed  Google Scholar 

  40. Hwang GH, Han WK, Park JS, Kang SG (2008) Determination of trace metals by anodic stripping voltammetry using a bismuth-modified carbon nanotube electrode. Talanta 76(2):301–308. https://doi.org/10.1016/j.talanta.2008.02.039

    Article  CAS  PubMed  Google Scholar 

  41. Saetia K, Schnorr JM, Mannarino MM, Kim SY, Rutledge GC, Swager TM, Hammond PT (2014) Spray-layer-by-layer carbon nanotube/Electrospun fiber electrodes for flexible Chemiresistive sensor applications. Adv Funct Mater 24(4):492–502

    Article  CAS  Google Scholar 

  42. Wang T, Guo Y, Wan P, Zhang H, Chen X, Sun X (2016) Flexible transparent electronic gas sensors. Small 12(28):3748–3756

    Article  CAS  PubMed  Google Scholar 

  43. Abbott J, Ye T, Qin L, Jorgolli M, Gertner RS, Ham D, Park H (2017) Cmos nanoelectrode array for all-electrical intracellular electrophysiological imaging. Nature Nanotechnol 12(5):460–466

    Article  ADS  CAS  Google Scholar 

  44. Zhang T, Mubeen S, Myung NV, Deshusses MA (2008) Recent progress in carbon nanotube-based gas sensors. Nanotechnology 19(33):332001. https://doi.org/10.1088/0957-4484/19/33/332001

  45. Jurs PC, Bakken G, McClelland H (2000) Computational methods for the analysis of chemical sensor array data from volatile analytes. Chem Rev 100(7):2649–2678

    Article  CAS  PubMed  Google Scholar 

  46. Zucchi G, Lebental B, Loisel L, Ramachandran S, Gutiérrez AF, Wang X, Godumala M, Bodelot L (2018) Chemical sensors based on carbon nanotubes functionalised by conjugated polymers for analysis in aqueous medium

    Google Scholar 

Download references

Acknowledgements

This work was supported by the EC-funded projects H2020-644852-Proteus, H2020-832876-aqua3S, H2020-820881-LOTUS and H2020-821036-Fiware4Water and by the SATT Paris Saclay project Micad’O.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Cousin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cousin, P. et al. (2022). Improving Water Quality and Security with Advanced Sensors and Indirect Water Sensing Methods. In: Di Mauro, A., Scozzari, A., Soldovieri, F. (eds) Instrumentation and Measurement Technologies for Water Cycle Management . Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-031-08262-7_11

Download citation

Publish with us

Policies and ethics