Skip to main content

CRISPR/Cas9-Mediated Targeted Mutagenesis in Medicinal Plants

  • Chapter
  • First Online:
Genome Editing

Abstract

At present, traditional biotechnology techniques have usually been exploited for medicinal plant breeding. However, recent biotechnology-based breeding techniques, i.e., genome editing diversify the platform to develop custom-designed medicinal plants. The sequence-specific nucleases of TALENs, ZFNs, and Cas are advance genome editing tools which produce user-defined plants. CRISPR/Cas-based genome editing is an emerging technique that utilizes artificially engineered nucleases for digesting DNA at targeted locations in the genome for high-throughput biotechnology-based breeding of valuable medicinal plants. Due to its wide application in gene mutagenesis, transcriptional regulation, high efficiency and easy manipulation, several plant-specific CRISPR/Cas9 vector systems have been designed. This methodology is based upon the type II adaptive immunity response of prokaryotes, which comprises of a CRISPR-associated (Cas)9 protein and an engineered sgRNA that specifically targets the nucleic acid sequence to induce selective mutagenesis. In this chapter, various CRISPR/Cas-based approaches are discussed with emphasis on CRISPR/Cas9 vector platforms, multiplex editing strategies, analysis methods for induced mutations, and its applications in medicinal plants. This chapter provides the advancements in genome editing technologies and their associated strategies, giving an insight on the limitations of CRISPR/Cas9 technique and its future advances to improve the quality of traditional medicinal herbs. This new system will further open new arena to manage synthetic biology of medicinal plants for industrial purposes and to investigate the function of gene to accelerate basic plant research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adli M (2018) The CRISPR tool kit for genome editing and beyond. Nat Commun 9:1911

    Article  Google Scholar 

  • Bahuguna RN, Joshi R, Singh G, Shukla A, Gupta R, Bains G (2011) Micropropagation and total alkaloid extraction of Indian snake root (Rauwolfia serpentina). Indian J Agric Sci 81:1124–1129

    CAS  Google Scholar 

  • Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300(5620):764

    Article  CAS  Google Scholar 

  • Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419–436

    Article  CAS  Google Scholar 

  • Chandrasegaran S, Carroll D (2016) Origins of programmable nucleases for genome engineering. J Mol Biol 428(5):963–989

    Article  CAS  Google Scholar 

  • Chen Z, Wu J, Ma Y, Wang P, Gu Z, Yang R (2018) Biosynthesis, metabolic regulation and bioactivity of phenolic acids in plant food materials. Food Sci 39(7):321–328

    Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823

    Article  CAS  Google Scholar 

  • Dahlman JE, Abudayyeh OO, Joung J, Gootenberg JS, Zhang F, Konermann S (2015) Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease. Nat Biotechnol 33(11):1159–1161

    Article  CAS  Google Scholar 

  • Denbow CJ, Lapins S, Dietz N, Scherer R, Nimchuk ZL, Okumoto S (2017) Gateway-compatible CRISPR-Cas9 vectors and a rapid detection by high-resolution melting curve analysis. Front Plant Sci 8:1171

    Article  Google Scholar 

  • Dhar MK, Koul A, Kaul S (2013) Farnesyl pyrophosphate synthase: a key enzyme in isoprenoid biosynthetic pathway and potential molecular target for drug development. New Biotechnol 30(2):114–123

    Article  CAS  Google Scholar 

  • Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346:12580

    Article  Google Scholar 

  • Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S (2005) Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 33(18):5978–5990

    Article  CAS  Google Scholar 

  • Fauser F, Schiml S, Puchta H (2014) Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J 79:348–359

    Article  CAS  Google Scholar 

  • Feng Z, Mao Y, Xu N, Zhang B, Wei P, Yang DL, Wang Z, Zhang Z, Zheng R, Yang L, Zeng L (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci 111(12):4632–4637

    Article  CAS  Google Scholar 

  • Feng S, Song W, Fu R, Zhang H, Xu A, Li J (2018) Application of the CRISPR/Cas9 system in Dioscorea zingiberensis. Plant Cell Tissue Organ Cult 135(1):133–141

    Article  CAS  Google Scholar 

  • Fuller KK, Chen S, Loros JJ, Dunlap JC (2015) Development of the CRISPR/Cas9 system for targeted gene disruption in Aspergillus fumigatus. Eukaryot Cell 14(11):1073–1080

    Article  CAS  Google Scholar 

  • Iqbal Z, Iqbal MS, Ahmad A, Memon AG, Ansari MI (2020) New prospects on the horizon: genome editing to engineer plants for desirable traits. Curr Plant Biol 20:100171

    Article  Google Scholar 

  • Ivanov IE, Wright AV, Cofsky JC, Aris KD, Doudna JA, Bryant Z (2020) Cas9 interrogates DNA in discrete steps modulated by mismatches and supercoiling. Proc Natl Acad Sci 117(11):5853–5860

    Article  CAS  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  Google Scholar 

  • Joshi R, Singh B, Chinnusamy V (2018) Genetically engineering cold stress-tolerant crops: approaches and challenges. In: Cold tolerance in plants. Springer, Cham, pp 179–195

    Chapter  Google Scholar 

  • Joshi R, Gupta BK, Pareek A, Singh MB, Singla-Pareek SL (2019) Functional genomics approach towards dissecting out abiotic stress tolerance trait in plants. In: Genetic enhancement of crops for tolerance to abiotic stress: mechanisms and approaches. Springer, Cham, pp 1–24

    Google Scholar 

  • Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14(1):49–55

    Article  CAS  Google Scholar 

  • Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucl Acids Res 41(20): e188.

    Google Scholar 

  • Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci 93(3):1156–1160

    Article  CAS  Google Scholar 

  • Kui L, Chen H, Zhang W, He S, Xiong Z, Zhang Y, Yan L, Zhong C, He F, Chen J, Zeng P (2017) Building a genetic manipulation tool box for orchid biology: identification of constitutive promoters and application of CRISPR/Cas9 in the orchid, Dendrobium officinale. Front Plant Sci 7:2036

    Article  Google Scholar 

  • LeBlanc C, Zhang F, Mendez J, Lozano Y, Chatpar K, Irish VF, Jacob Y (2018) Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress. Plant J 93(2):377–386

    Article  CAS  Google Scholar 

  • Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31(8):688–691

    Article  CAS  Google Scholar 

  • Li B, Cui G, Shen G, Zhan Z, Huang L, Chen J, Qi X (2017) Targeted mutagenesis in the medicinal plant Salvia miltiorrhiza. Sci Rep 7(1):43320

    Article  Google Scholar 

  • Li R, Ba Y, Song Y, Cui J, Zhang X, Zhang D, Yuan Z, Yang L (2020) Rapid and sensitive screening and identification of CRISPR/Cas9 edited rice plants using quantitative real-time PCR coupled with high resolution melting analysis. Food Control 112:107088

    Article  CAS  Google Scholar 

  • Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211

    Article  CAS  Google Scholar 

  • Liu J, Gunapati S, Mihelich NT, Stec AO, Michno JM, Stupar RM (2019) Genome editing in soybean with CRISPR/Cas9. In: Plant genome editing with CRISPR systems. Humana Press, New York, pp 217–234

    Chapter  Google Scholar 

  • Long L, Guo DD, Gao W, Yang WW, Hou LP, Ma XN, Miao YC, Botella JR, Song CP (2018) Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression. Plant Methods 14(1):85

    Article  Google Scholar 

  • Lowder L, Malzahn A, Qi Y (2017) Rapid construction of multiplexed CRISPR-Cas9 systems for plant genome editing. In: Plant pattern recognition receptors. Humana Press, New York, pp 291–307

    Chapter  Google Scholar 

  • Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8(8):1274–1284

    Article  CAS  Google Scholar 

  • Ma X, Zhu Q, Chen Y, Liu YG (2016) CRISPR/Cas9 platforms for genome editing in plants: developments and applications. Mol Plant 9(7):961–974

    Article  CAS  Google Scholar 

  • Ma X, Zhang X, Liu H, Li Z (2020) Highly efficient DNA-free plant genome editing using virally delivered CRISPR–Cas9. Nat Plants 6(7):773–779

    Article  CAS  Google Scholar 

  • Mao Y, Zhang H, Xu N, Zhang B, Gou F, Zhu JK (2013) Application of the CRISPR–Cas system for efficient genome engineering in plants. Mol Plant 6(6):2008–2011

    Article  CAS  Google Scholar 

  • Moradpour M, Abdulah SN (2020) CRISPR/dC as9 platforms in plants: strategies and applications beyond genome editing. Plant Biotechnol J 18(1):32–44

    Article  Google Scholar 

  • Negritto MC (2010) Repairing double-strand DNA breaks. Nat Educ 3:26

    Google Scholar 

  • Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31(8):691–693

    Article  CAS  Google Scholar 

  • Niazian M (2019) Application of genetics and biotechnology for improving medicinal plants. Planta 249(4):953–973

    Article  CAS  Google Scholar 

  • Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156(5):935–949

    Article  CAS  Google Scholar 

  • Osakabe Y, Osakabe K (2015) Genome editing with engineered nucleases in plants. Plant Cell Physiol 56(3):389–400

    Article  CAS  Google Scholar 

  • Osakabe K, Saika H, Okuzaki A, Toki S (2012) Site-directed mutagenesis in higher plants. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CAB eBooks, Wallingford, pp 523–533

    Chapter  Google Scholar 

  • Pannunzio NR, Watanabe G, Lieber MR (2018) Nonhomologous DNA end-joining for repair of DNA double-strand breaks. J Biol Chem 293(27):10512–10523

    Article  CAS  Google Scholar 

  • Piatek A, Ali Z, Baazim H, Li L, Abulfaraj A, Al-Shareef S, Aouida M, Mahfouz MM (2015) RNA-guided transcriptional regulation in planta via synthetic dC as9-based transcription factors. Plant Biotechnol J 13(4):578–589

    Article  CAS  Google Scholar 

  • Polstein LR, Gersbach CA (2015) A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat Chem Biol 11(3):198–200

    Article  CAS  Google Scholar 

  • Ren C, Liu Y, Guo Y, Duan W, Fan P, Li S, Liang Z (2021) Optimizing the CRISPR/Cas9 system for genome editing in grape by using grape promoters. Hortic Res 8(1):52

    Article  CAS  Google Scholar 

  • Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31(8):686–688

    Article  CAS  Google Scholar 

  • Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507(7490):62–67

    Article  CAS  Google Scholar 

  • Terns MP, Terns RM (2011) CRISPR-based adaptive immune systems. Curr Opin Microbiol 14(3):321–327

    Article  CAS  Google Scholar 

  • Upadhyay J, Upadhyay G, Joshi R, Juyal V (2014) Effect of rhododendron flower juice on the bioavailability of amlodipine in rats. Int J Bioassays 3(2):1734–1737

    Google Scholar 

  • Vats S, Kumawat S, Kumar V, Patil GB, Joshi T, Sonah H, Sharma TR, Deshmukh R (2019) Genome editing in plants: exploration of technological advancements and challenges. Cell 8(11):1386

    Article  CAS  Google Scholar 

  • Wang M, Mao Y, Lu Y, Wang Z, Tao X, Zhu JK (2018) Multiplex gene editing in rice with simplified CRISPR-Cpf1 and CRISPR-Cas9 systems. J Intgr Plant Biol 60(8):626–631

    Article  CAS  Google Scholar 

  • Wani SH, Tripathi P, Zaid A, Challa GS, Kumar A, Kumar V, Upadhyay J, Joshi R, Bhatt M (2018) Transcriptional regulation of osmotic stress tolerance in wheat (Triticum aestivum L.). Plant Mol Biol 97(6):469–487

    Article  CAS  Google Scholar 

  • Xie X, Ma X, Liu YG (2019) Decoding sanger sequencing chromatograms from CRISPR-induced mutations. In: Plant genome editing with CRISPR systems. Humana Press, New York, pp 33–43

    Chapter  Google Scholar 

  • Yang L, Ding G, Lin H, Cheng H, Kong Y, Wei Y, Fang X, Liu R, Wang L, Chen X, Yang C (2013) Transcriptome analysis of medicinal plant Salvia miltiorrhiza and identification of genes related to tanshinone biosynthesis. PLoS One 8(11):e80464

    Article  Google Scholar 

  • Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang H, Xu N, Zhu JK (2014) The CRISPR/C as9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12(6):797–807

    Article  CAS  Google Scholar 

  • Zhou Z, Tan H, Li Q, Chen J, Gao S, Wang Y, Chen W, Zhang L (2018) CRISPR/Cas9-mediated efficient targeted mutagenesis of RAS in Salvia miltiorrhiza. Phytochemistry 148:63–70

    Article  Google Scholar 

  • Zischewski J, Fischer R, Bortesi L (2017) Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases. Biotechnol Adv 35(1):95–104

    Article  CAS  Google Scholar 

Download references

Acknowledgments

MP, KD and RJ gratefully acknowledge the director, CSIR-Institute of Himalayan Bioresource Technology, Palampur, for providing the facilities to carry out this work. CSIR support in the form of project MLP0201, MLP0165, MLP0170, and MLP0172 and agriculture department, Shimla in the form of project SSP-0125 and SSP-0126 for this study is highly acknowledged. This manuscript represents CSIR-IHBT communication no. 4891.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patial, M., Devi, K., Joshi, R. (2022). CRISPR/Cas9-Mediated Targeted Mutagenesis in Medicinal Plants. In: Wani, S.H., Hensel, G. (eds) Genome Editing. Springer, Cham. https://doi.org/10.1007/978-3-031-08072-2_3

Download citation

Publish with us

Policies and ethics