Skip to main content

Copper (Cu)

  • Chapter
  • First Online:
Androgenetic Alopecia From A to Z

Abstract

Copper is a transition metal with the symbol Cu and atomic number 29. It is an essential trace element in all known organisms and is found in all human body tissues, with the highest concentrations measured in the liver and brain [1]. Cu is mostly present in biological systems as cupric form (Cu++), although several distinct types of the bound cation can be found in Cu-containing enzymes, often in combination within a single protein. Nearly two-thirds of the body Cu content (80–120 mg) are located in muscle and skeleton, but studies with isotopes have shown that the liver is a principal site in maintaining plasma cu concentrations [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Turnlund JR. Copper. In: Shils ME, Shike M, Ross AC, editors. Modern nutrition in health and disease. 10th ed. Lippincott: Williams and Wilkins; 2006. p. 286–99.

    Google Scholar 

  2. Turnlund JR. Human whole-body copper metabolism. Am J Clin Nutr. 1998;67(5 Suppl):960S–4S.

    CAS  PubMed  Google Scholar 

  3. Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O’Halloran TV. Undetectable intracellular free copper: The requirement of a copper chaperone for superoxide dismutase. Science. 1999;284(5415):805–8.

    CAS  PubMed  Google Scholar 

  4. Boal AK, Rosenzweig AC. Structural biology of copper trafficking. Chem Rev. 2009;109:4760–79.

    CAS  PubMed  Google Scholar 

  5. Huffman DL, O’Halloran TV. Function, structure, and mechanism of intracellular copper trafficking proteins. Annu Rev Biochem. 2001;70:677–701.

    CAS  PubMed  Google Scholar 

  6. Harris E. The transport of copper. In: Prasad AS, editor. Essential and toxic trace elements in human health and disease: an update. New York: Wiley-Liss; 1993. p. 163–79.

    Google Scholar 

  7. Cousins RJ. Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiol Rev. 1985;65(2):238–309.

    CAS  PubMed  Google Scholar 

  8. Powanda MC. Systemic alterations in metal metabolism during inflammation as part of an integrated response to inflammation. Agents Actions Suppl. 1981;8:121–35.

    CAS  PubMed  Google Scholar 

  9. Lau SJ, Sarkar B. Ternary coordination complex between human serum albumin, copper (II), and L-histidine. J Biol Chem. 1971;246(19):5938–43.

    CAS  PubMed  Google Scholar 

  10. Institute of Medicine (US) Panel on Micronutrients. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington, DC: National Academies Press (US); 2001.

    Google Scholar 

  11. Beinert H. Copper A of cytochrome c oxidase, a novel, long-embattled, biological electron-transfer site. Eur J Biochem. 1997;245(3):521–32.

    CAS  PubMed  Google Scholar 

  12. MacPherson IS, Murphy ME. Type-2 copper-containing enzymes. Cell Mol Life Sci. 2007;64(22):2887–99.

    CAS  PubMed  Google Scholar 

  13. García-Borrón JC, Solano F. Molecular anatomy of tyrosinase and its related proteins: beyond the histidine-bound metal catalytic center. Pigment Cell Res. 2002;15(3):162–73.

    PubMed  Google Scholar 

  14. Fukai T, Ushio-Fukai M. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal. 2011;15(6):1583–606.

    CAS  PubMed  Google Scholar 

  15. Lutsenko S, Bhattacharjee A, Hubbard AL. Copper handling machinery of the brain. Metallomics. 2010;2(9):596–608.

    CAS  PubMed  Google Scholar 

  16. Brown DH, Smith WE, Teape JW, Lewis AJ. Antiinflammatory effects of some copper complexes. J Med Chem. 1980;23(7):729–34.

    CAS  PubMed  Google Scholar 

  17. Sorenson JR. Copper chelates as possible active forms of the antiarthritic agents. J Med Chem. 1976;19(1):135–48.

    CAS  PubMed  Google Scholar 

  18. Milanino R, Buchner V. Copper: role of the ‘endogenous’ and ‘exogenous’ metal on the development and control of inflammatory processes. Rev Environ Health. 2006;21(3):153–215.

    CAS  PubMed  Google Scholar 

  19. Sorenson JRJ, Berthon G. Copper potentiation of non-steroidal antiinflammatory drugs. In: Handbook of metal-ligand interactions in biological fluids. 1st ed. New York: Marcel Dekker Inc.; 1995. p. 1318–56.

    Google Scholar 

  20. Jones LN. Investigation of structural proteins in human hair defects using anagen follicles. Br J Dermatol. 1996;135(1):80–5.

    CAS  PubMed  Google Scholar 

  21. Aguilar MJ, Chadwick DL, Okuyama K, Kamoshita S. Kinky hair disease. I. Clinical and pathological features. J Neuropathol Exp Neurol. 1966;25(4):507–22.

    CAS  PubMed  Google Scholar 

  22. Olivares M, Uauy R. Copper as an essential nutrient. Am J Clin Nutr. 1996;63(5):791S–6S.

    CAS  PubMed  Google Scholar 

  23. Palumbo A, d’Ischia M, Misuraca G, Prota G, Schultz TM. Structural modifications in biosynthetic melanins induced by metal ions. Biochim Biophys Acta. 1988;964(2):193–9.

    CAS  PubMed  Google Scholar 

  24. Hearing VJ, Tsukamoto K. Enzymatic control of pigmentation in mammals. FASEB J. 1991;5(14):2902–9.

    CAS  PubMed  Google Scholar 

  25. Setty SR, Tenza D, Sviderskaya EV, Bennett DC, Raposo G, Marks MS. Cell-specific ATP7A transport sustains copper-dependent tyrosinase activity in melanosomes. Nature. 2008;454(7208):1142–6.

    CAS  PubMed  Google Scholar 

  26. Fatemi Naieni F, Ebrahimi B, Vakilian HR, Shahmoradi Z. Serum iron, zinc, and copper concentration in premature graying of hair. Biol Trace Elem Res. 2012;146(1):30–4.

    CAS  PubMed  Google Scholar 

  27. Sugimoto Y, Lopez-Solache I, Labrie F, Van L-T. Cations inhibit specifically type I 5 alpha-reductase found in human skin. J Invest Dermatol. 1995;104(5):775.

    CAS  PubMed  Google Scholar 

  28. Sinquin G, Morfin RF, Charles JF, Floch HH. Testosterone metabolism by homogenates of human prostates with benign hyperplasia: effects of zinc, cadmium and other bivalent cations. J Steroid Biochem. 1984;20(3):773–80.

    CAS  PubMed  Google Scholar 

  29. Barnea A, Cho G, Hartter DE. A correlation between the ligand specificity for 67copper uptake and for copper-prostaglandin E2 stimulation of the release of gonadotropin-releasing hormone from median eminence explants. Endocrinology. 1988;122(4):1505–10.

    CAS  PubMed  Google Scholar 

  30. Michelet JF, Commo S, Billoni N, Mahé YF, Bernard BA. Activation of cytoprotective prostaglandin synthase-1 by minoxidil as a possible explanation for its hair growth-stimulating effect. J Invest Dermatol. 1997;108(2):205–9.

    CAS  PubMed  Google Scholar 

  31. Norman P. DP(2) receptor antagonists in development. Expert Opin Investig Drugs. 2010;19(8):947–61.

    CAS  PubMed  Google Scholar 

  32. Mussalo-Rauhamaa H, Lakomaa EL, Kianto U, Lehto J. Element concentrations in serum, erythrocytes, hair and urine of alopecia patients. Acta Derm Venereol. 1986;66(2):103–9.

    CAS  PubMed  Google Scholar 

  33. Jin W, Zhu Z, Wu S, Zhang X, Zhou X. Determination of zinc, copper, iron and manganese contents in hair for MPA patients and healthy men. Guang Pu Xue Yu Guang Pu Fen Xi. 1998;18(1):91–3.

    CAS  PubMed  Google Scholar 

  34. Naginiene R, Kregzdyte R, Abdrakhmanovas A, Ryselis S. Assay of trace elements, thyroid gland and blood indices in children with alopecia. Trace Elements and Electrolytes. 2004;21:207–10.

    CAS  Google Scholar 

  35. Bhat YJ, Manzoor S, Khan AR, Qayoom S. Trace element levels in alopecia areata. Indian J Dermatol Venereol Leprol. 2009;75(1):29–31.

    PubMed  Google Scholar 

  36. Skalnaya MG, Tkachev VP. Trace elements content and hormonal profiles in women with androgenetic alopecia. J Trace Elem Med Biol. 2011;25(Suppl 1):S50–3.

    CAS  PubMed  Google Scholar 

  37. Amirnia M, Sinafar S, Sinafar H, Nuri M. Assessment of zinc and copper contents in the hair and serum and also superoxide dismutase, glutathion peroxidase and malondi aldehyde in serum in androgenetic alopecia and alopecia areata. Life Sci J. 2013;10:204–9.

    Google Scholar 

  38. Dastgheib L, Mostafavi-pour Z, Abdorazagh AA, et al. Comparison of Zn, Cu, and Fe content in hair and serum in alopecia areata patients with normal group. Dermatol Res Pract. 2014;2014:1–5.

    Google Scholar 

  39. Kil MS, Kim CW, Kim SS. Analysis of serum zinc and copper concentrations in hair loss. Ann Dermatol. 2013;25(4):405–9.

    CAS  PubMed  Google Scholar 

  40. Ozturk P, Kurutas E, Ataseven A, Dokur N, Gumusalan Y, Gorur A, tamer L, Inaloz S. BMI and levels of zinc, copper in hair, serum and urine of Turkish male patients with androgenetic alopecia. J Trace Elem Med Biol. 2014;28(3):266–70.

    CAS  PubMed  Google Scholar 

  41. Jin W, Zheng H, Shan B, Wu Y. Changes of serum trace elements level in patients with alopecia areata: a meta-analysis. J Dermatol. 2017;44(5):588–91.

    CAS  PubMed  Google Scholar 

  42. Hostynek JJ, Dreher F, Maibach HI. Human skin penetration of a copper tripeptide in vitro as a function of skin layer. Inflamm Res. 2011;60(1):79–86.

    CAS  PubMed  Google Scholar 

  43. Hostýnek JJ, Dreher F, Maibach HI. Human stratum corneum penetration by copper: in vivo study after occlusive and semiocclusive application of the metal as powder. Food Chem Toxicol. 2006;44(9):1539–43.

    PubMed  Google Scholar 

  44. Biel K, Kretzschmar L, Müller C, Metze D, Traupe H. Green hair caused by frequent swimming pool use. Hautarzt. 1997;48(8):568–71.

    CAS  PubMed  Google Scholar 

  45. Cline DJ. Changes in hair color. Dermatol Clin. 1988;6(2):295–303.

    CAS  PubMed  Google Scholar 

  46. Trüeb RM. The hair cycle and its relation to nutrition. In: Nutrition for healthy hair. Cham: Springer; 2020. p. 88.

    Google Scholar 

  47. Blanc D, Zultak M, Rochefort A, Faivre B, Claudet MH, Drobacheff C. Les cheveux verts: étude clinique, chimique et épidémiologique. A propos d’un cas [green hair: Clinical, chemical and epidemiologic study. Apropos of a case]. Ann Dermatol Venereol. 1988;115(8):807–12.

    CAS  PubMed  Google Scholar 

  48. Connor CJ, Vidal NY, Liu V. Persistent Chlorotrichosis with chronic sun exposure cutis. 2020 105(02):E25-E27

    Google Scholar 

  49. Bost M, Houdart S, Oberli M, Kalonji E, Huneau JF, Margaritis I. Dietary copper and human health: Current evidence and unresolved issues. J Trace Elem Med Biol. 2016;35:107–15.

    CAS  PubMed  Google Scholar 

  50. Olivares M, Uauy R. Limits of metabolic tolerance to copper and biological basis for present recommendations and regulations. Am J Clin Nutr. 1996;63(5):846S–52S.

    CAS  PubMed  Google Scholar 

  51. Shaw JCL. Copper deficiency in term and preterm infants. In: Fomon SJ, Zlotkin S, editors. Nutritional anemias. New York: Vevey/Raven Press; 1992. p. 105–17.

    Google Scholar 

  52. Fujita M, Itakura T, Takagi Y, Okada A. Copper deficiency during total parenteral nutrition: clinical analysis of three cases. J Parenter Enteral Nutr. 1989;13(4):421–5.

    CAS  Google Scholar 

  53. Griffith DP, Liff DA, Ziegler TR, Esper GJ, Winton EF. Acquired copper deficiency: a potentially serious and preventable complication following gastric bypass surgery. Obesity (Silver Spring). 2009;17(4):827–31.

    CAS  PubMed  Google Scholar 

  54. Maret W, Sandstead HH. Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol. 2006;20(1):3–18.

    CAS  PubMed  Google Scholar 

  55. Kumar N, Gross JB Jr, Ahlskog JE. Copper deficiency myelopathy produces a clinical picture like subacute combined degeneration. Neurology. 2004;63(1):33–9.

    CAS  PubMed  Google Scholar 

  56. Igic PG, Lee E, Harper W, Roach KW. Toxic effects associated with consumption of zinc. Mayo Clin Pro. 2002;77(7):713–6.

    Google Scholar 

  57. Scheinberg IH, Sternlieb I. is non-Indian childhood cirrhosis caused by excess dietary copper? Lancet. 1994;344(8928):1002–4.

    CAS  PubMed  Google Scholar 

  58. de Romaña DL, Olivares M, Uauy R, Araya M. Risks and benefits of copper in light of new insights of copper homeostasis. J Trace Elem Med Biol. 2011;25(1):3–13.

    PubMed  Google Scholar 

  59. Davis GK, Mertz W. Copper. In: Mertz W, editor. Trace elements in human and animal nutrition. 5th ed. New York: Academic Press; 1987. p. 301–64.

    Google Scholar 

  60. Gaetke LM, Chow-Johnson HS, Chow CK. Copper: toxicological relevance and mechanisms. Arch Toxicol. 2014;88:1929–38.

    CAS  PubMed  Google Scholar 

  61. O’Donohue J, Reid M, Varghese A, Portmann B, Williams R. A case of adult chronic copper self-intoxication resulting in cirrhosis. Eur J Med Res. 1999;4(6):252.

    PubMed  Google Scholar 

  62. Scheinberg IH, Sternlieb I. Wilson disease and idiopathic copper toxicosis. Am J Clin Nutr. 1996;63(5):842S–5S.

    CAS  PubMed  Google Scholar 

  63. Walker WR, Keats DM. An investigation of the therapeutic value of the ‘copper bracelet’-dermal assimilation of copper in arthritic/rheumatoid conditions. Agents Actions. 1976;6(4):454–9.

    CAS  PubMed  Google Scholar 

  64. Bratton RL, Montero DP, Adams KS, Novas MA, McKay TC, Hall LJ, Foust JG, Mueller MB, O’Brien PC, Atkinson EJ, Maurer MS. Effect of “ionized” wrist bracelets on musculoskeletal pain: a randomized, double-blind, placebo-controlled trial. Mayo Clin Proc. 2002;77:1164–8.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anastassakis, K. (2022). Copper (Cu). In: Androgenetic Alopecia From A to Z . Springer, Cham. https://doi.org/10.1007/978-3-031-08057-9_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08057-9_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08056-2

  • Online ISBN: 978-3-031-08057-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics