Skip to main content

Identification of the COVID-19 Droplet Deposition Path and Its Effects on the Human Respiratory Tract Before and After the Disease: A Scoping Novel Respiratory Mask Design

  • Chapter
  • First Online:
Frontiers of COVID-19

Abstract

It is important to study the uptake of viral droplets in the human respiratory system in order to better understand, control, prevent, and treat diseases. Microdroplets can easily pass through ordinary respiratory masks. Therefore, conversation with a normal mask with “silent spreaders” makes the disease transmissibility possible.

In this study, a well-verified real anatomical model was used; the passage of air in the human upper respiratory system, computed using high-quality computer tomography (CT) images. Then, the air flow field along with the coronavirus microdroplets injection was examined in this realistic model, using fluid–structure interaction (FSI) method. The discrete phase model (DPM) was used to solve the field and with the help of it, the accurate assessment of the temporal and spatial motion of the deposition in the virus-impregnated droplets was obtained in vitro in the upper respiratory system.

The results show inhalation only through the nose, although the amount of deposited microdroplets in the olfactory epithelium area is low; however, they begin to move toward the brain through absorption in the cribriform plate with the most relaxation time in this area, that eventually leads to brain lesion damage, and in some cases to stroke. Other achievements of this study include the inverse relationship between droplet deposition efficiency in some parts of upper airway, which has the most deformation in the tract. Also, the increased amount of deformities per minute and 1.5 times more than usual, applied to the trachea and nasal cavity, could lead to chest pain and headache.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kahn JS, McIntosh K. History and recent advances in coronavirus discovery. Pediatr Infect Dis J. 2005;24(11 Suppl):S223–7, discussion S226.

    Article  PubMed  Google Scholar 

  2. Shiu EYC, Leung NHL, Cowling BJ. Controversy around airborne versus droplet transmission of respiratory viruses: implication for infection prevention. Curr Opin Infect Dis. 2019;32(4):372–9.

    Article  PubMed  CAS  Google Scholar 

  3. Gu J, Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. Am J Pathol. 2007;170(4):1136–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li YG, Chwang AT, Seto WH, Ho PL, Yuen PL. Understanding droplets produced by nebulisers and respiratory activities. Hong Kong Med J. 2008;14(Suppl 1):S29–32.

    Google Scholar 

  5. Chan TL, Lippmann M. Experimental measurements and empirical modelling of the regional deposition of inhaled particles in humans. Am Ind Hyg Assoc J. 1980;41:399.

    Article  CAS  PubMed  Google Scholar 

  6. Nowak N, Kakade PP, Annapragada AV. Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs. Ann Biomed Eng. 2003;31(4):374–90.

    Article  PubMed  Google Scholar 

  7. Matida EA, et al. Improved numerical simulation of aerosol deposition in an idealized mouth–throat. J Aerosol Sci. 2004;35(1):1–19.

    Article  CAS  Google Scholar 

  8. Heyder J. Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery. Proc Am Thorac Soc. 2004;1(4):315–20.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Z, Kleinstreuer C. Airflow structures and nano-particle deposition in a human upper airway model. J Comput Phys. 2004;198(1):178–210.

    Article  Google Scholar 

  10. Mahesh K, Constantinescu G, Moin P. A numerical method for large-eddy simulation in complex geometries. J Comput Phys. 2004;197(1):215–40.

    Article  Google Scholar 

  11. Zhou Y, Cheng Y-S. Particle deposition in a cast of human tracheobronchial airways. Aerosol Sci Tech. 2005;39(6):492–500.

    Article  CAS  Google Scholar 

  12. Jin HH, et al. Large eddy simulation of inhaled particle deposition within the human upper respiratory tract. J Aerosol Sci. 2007;38(3):257–68.

    Article  CAS  Google Scholar 

  13. Farkas A, Balashazy I, Szocs K. Characterization of regional and local deposition of inhaled aerosol drugs in the respiratory system by computational fluid and particle dynamics methods. J Aerosol Med. 2006;19:329–43.

    Article  CAS  PubMed  Google Scholar 

  14. Xi J, Longest PW. Transport and deposition of micro-aerosols in realistic and simplified models of the oral airway. Ann Biomed Eng. 2007;35(4):560–81.

    Article  PubMed  Google Scholar 

  15. Shi H, Kleinstreuer C, Zhang Z. Modeling of inertial particle transport and deposition in human nasal cavities with wall roughness. J Aerosol Sci. 2007;38(4):398–419.

    Article  CAS  Google Scholar 

  16. Li Z, Kleinstreuer C, Zhang Z. Simulation of airflow fields and microparticle deposition in realistic human lung airway models. Part II: particle transport and deposition. Eur J Mech B Fluids. 2007;26(5):650–68.

    Article  Google Scholar 

  17. Lin CL, et al. Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways. Respir Physiol Neurobiol. 2007;157(2–3):295–309.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jayaraju ST, et al. Fluid flow and particle deposition analysis in a realistic extrathoracic airway model using unstructured grids. J Aerosol Sci. 2007;38(5):494–508.

    Article  CAS  Google Scholar 

  19. Ma B, Lutchen KR. CFD simulation of aerosol deposition in an anatomically based human large-medium airway model. Ann Biomed Eng. 2009;37(2):271–85.

    Article  PubMed  Google Scholar 

  20. Mihaescu M, et al. Large Eddy simulation and Reynolds-averaged Navier-stokes modeling of flow in a realistic pharyngeal airway model: an investigation of obstructive sleep apnea. J Biomech. 2008;41(10):2279–88.

    Article  PubMed  Google Scholar 

  21. Shanley KT, et al. Numerical simulations investigating the regional and overall deposition efficiency of the human nasal cavity. Inhal Toxicol. 2008;20(12):1093–100.

    Article  CAS  PubMed  Google Scholar 

  22. Kleinstreuer C, Zhang Z. Airflow and particle transport in the human respiratory system. Annu Rev Fluid Mech. 2010;42(1):301–34.

    Article  Google Scholar 

  23. Inthavong K, Zhang K, Tu J. Numerical modelling of nanoparticle deposition in the nasal cavity and the tracheobronchial airway. Comput Methods Biomech Biomed Engin. 2011;14(7):633–43.

    Article  PubMed  Google Scholar 

  24. Huang J, Zhang L. Numerical simulation of micro-particle deposition in a realistic human upper respiratory tract model during transient breathing cycle. Particuology. 2011;9(4):424–31.

    Article  Google Scholar 

  25. Frank DO, et al. Effects of anatomy and particle size on nasal sprays and nebulizers. Otolaryngol Head Neck Surg. 2012;146(2):313–9.

    Article  PubMed  Google Scholar 

  26. Hopke PK, Wang Z. Particle deposition in the human respiratory tract. In: Fine particles in medicine and pharmacy; 2012. p. 223–40.

    Chapter  Google Scholar 

  27. Li D, et al. Numerical simulation of particles deposition in a human upper airway. Adv Mech Eng. 2015;6.

    Google Scholar 

  28. Yousefi M, Inthavong K, Tu J. Microparticle transport and deposition in the human oral airway: toward the smart spacer. Aerosol Sci Tech. 2015;49(11):1109–20.

    Article  CAS  Google Scholar 

  29. Varghese SK, Gangamma S. Particle deposition in human respiratory system: deposition of concentrated hygroscopic aerosols. Inhal Toxicol. 2009;21(7):619–30.

    Article  CAS  PubMed  Google Scholar 

  30. Basu S, Frank-Ito DO, Kimbell JS. On computational fluid dynamics models for sinonasal drug transport: relevance of nozzle subtraction and nasal vestibular dilation. Int J Numer Meth Biomed Eng. 2017;34(4):e2946.

    Article  Google Scholar 

  31. Islam MS, et al. Euler–Lagrange approach to investigate respiratory anatomical shape effects on aerosol particle transport and deposition. Toxicol Res Appl. 2019;3:1–15.

    Google Scholar 

  32. Islam MS, et al. Euler-Lagrange prediction of diesel-exhaust polydisperse particle transport and deposition in lung: anatomy and turbulence effects. Sci Rep. 2019;9(1):12423.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Islam MS, et al. A review of respiratory anatomical development, air flow characterization and particle deposition. Int J Environ Res Public Health. 2020;17:380.

    Article  CAS  PubMed Central  Google Scholar 

  34. Ma B, et al. Potential effects of lingual fats on airway flow dynamics and particle deposition. Aerosol Sci Tech. 2019;54(3):321–31.

    Article  CAS  Google Scholar 

  35. Keyhani K, Scherer PW, Mozell MM. Numerical simulation of airflow in the human nasal cavity. J Biomed Eng. 1995;117:429–41.

    CAS  Google Scholar 

  36. Hörschler I, Meinke M, Schröder W. Numerical simulation of the flow field in a model of the nasal cavity. Comput Fluids. 2003;32:39–45.

    Article  Google Scholar 

  37. Grgic B, Finlay WH, Heenan AF. Regional aerosol deposition and flow measurements in an idealized mouth and throat. J Aerosol Sci. 2004;35(1):21–32.

    Article  CAS  Google Scholar 

  38. Grgic B, et al. In vitro intersubject and intrasubject deposition measurements in realistic mouth–throat geometries. J Aerosol Sci. 2004;35(8):1025–40.

    Article  CAS  Google Scholar 

  39. Heenan AF, et al. An investigation of the relationship between the flow field and regional deposition in realistic extra-thoracic airways. J Aerosol Sci. 2004;35(8):1013–23.

    Article  CAS  Google Scholar 

  40. Shi H, Kleinstreuer C, Zhang Z. Laminar airflow and nanoparticle or vapor deposition in a human nasal cavity model. J Biomech Eng. 2006;128(5):697–706.

    Article  CAS  PubMed  Google Scholar 

  41. Xi J, Longest PW. Numerical predictions of submicrometer aerosol deposition in the nasal cavity using a novel drift flux approach. Int J Heat Mass Transf. 2008;51(23–24):5562–77.

    Article  Google Scholar 

  42. Chen X, et al. Study on gas/solid flow in an obstructed pulmonary airway with transient flow based on CFD–DPM approach. Powder Technol. 2012;217:252–60.

    Article  CAS  Google Scholar 

  43. Nicolaou L, Zaki TA. Direct numerical simulations of flow in realistic mouth–throat geometries. J Aerosol Sci. 2013;57:71–87.

    Article  CAS  Google Scholar 

  44. Shinneeb AM, Pollard A. Investigation of the flow physics in the human pharynx/larynx region. Exp Fluids. 2012;53(4):989–1003.

    Article  Google Scholar 

  45. Leung NHL, et al. Respiratory virus shedding in exhaled breath and efficacy of face masks. Nat Med. 2020;26(5):676–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mortazavy Beni H, Hassani K, Khorramymehr S. In silico investigation of sneezing in a full real human upper airway using computational fluid dynamics method. Comput Methods Programs Biomed. 2019;177:203–9.

    Article  PubMed  Google Scholar 

  47. Mortazavy Beni H, Hassani K, Khorramymehr S. Study of the sneezing effects on the real human upper airway using fluid–structure interaction method. J Braz Soc Mech Sci Eng. 2019;41:1–3.

    Article  Google Scholar 

  48. Decaro N. Betacoronavirus. In: Tidona C, Darai G, editors. The Springer index of viruses. New York, NY: Springer; 2011. p. 385–401.

    Chapter  Google Scholar 

  49. Birch MJ, Srodon PD. Biomechanical properties of the human soft palate. Cleft Palate Craniofac J. 2009;46(3):268–74.

    Article  CAS  PubMed  Google Scholar 

  50. Cheng YS. Aerosol deposition in the extrathoracic region. Aerosol Sci Tech. 2003;37(8):659–71.

    Article  CAS  Google Scholar 

  51. Cameron JR, Skofronick JG, Grant RM. Medical Physics: physics of the body. Madison, WI: Medical Physics Publishing Corporation; 1992.

    Google Scholar 

  52. Baig AM, et al. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Nerosci. 2020;11(7):995–8.

    Article  CAS  Google Scholar 

  53. Mao L, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):683–90.

    Article  PubMed  Google Scholar 

  54. Lu X, et al. SARS-CoV-2 infection in children. N Engl J Med. 2020;382(17):1663–5.

    Article  PubMed  Google Scholar 

  55. Chen T, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020;368:m1091.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hamed M, Beni HM, Aghaei F, Sajadian H. SARS-CoV-2 droplet deposition path and its effects on the human upperairway in the oral inhalation. Comput Methods Programs Biomed. 2020;200:105843.

    Google Scholar 

  57. Mortazavy Beni H, Mortazavi H, Aghaei F, Kamalipour S. Experimental tracking and numerical mapping of novel coronavirus micro-droplet deposition through nasal inhalation in the human respiratory system. Biomech Model Mechanobiol. 2021;20(3):1087–100.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Beni HM, Mortazavi H, Tashvighi E, Islam MS. Investigation of the upper respiratory tract of a male smoker with laryngeal cancer by inhaling air associated with various physical activity levels. Atmosphere. 2022;13(5):717. https://doi.org/10.3390/atmos13050717.

  59. Alaodolehei B, Jafarian K, Sheikhani A, Beni HM. Performance enhancement of an achalasia automatic detection system using ensemble empirical mode decomposition denoising method. J Med Biol Eng. 2020;40(2):179–88. https://doi.org/10.1007/s40846-019-00497-4.

  60. Beni HM, Mortazavi H. Mathematical modeling of the solar regenerative heat exchanger under turbulent oscillating flow: applications of renewable and sustainable energy and artificial heart. Results Eng. 2022;13:100321. https://doi.org/10.1016/j.rineng.2021.100321.

  61. Beni HM, Mortazavi H, Islam MS. Biomedical and biophysical limits to mathematical modeling of pulmonary system mechanics: a scoping review on aerosol and drug delivery. Biomech Model Mechanobiol. 2022;21(1):79–87. https://doi.org/10.1007/s10237-021-01531-8.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamidreza Mortazavy Beni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beni, H.M., Mortazavi, H., Mansoori, M., Aghaei, F. (2022). Identification of the COVID-19 Droplet Deposition Path and Its Effects on the Human Respiratory Tract Before and After the Disease: A Scoping Novel Respiratory Mask Design. In: Adibi, S., Griffin, P., Sanicas, M., Rashidi, M., Lanfranchi, F. (eds) Frontiers of COVID-19. Springer, Cham. https://doi.org/10.1007/978-3-031-08045-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08045-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08044-9

  • Online ISBN: 978-3-031-08045-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics