Skip to main content

Serum Leptin as a Biomarker in Diabetes

Links with Acromegaly

  • Reference work entry
  • First Online:
Biomarkers in Diabetes
  • 1050 Accesses

Abstract

Acromegaly is a rare disease caused by an overproduction of growth hormone and revealed by progressive clinical features. Due to the abundance of growth hormone receptors in the body, it is a systemic disease that leads to many complications and concomitant diseases. An obvious medical concern in the context of acromegaly is diabetes. It can be the result of excess growth hormone and its mediators, but it can also result from the treatment of acromegaly.

This chapter reveals the pathophysiological role of leptin in glucose and lipid metabolism in diabetic patients, especially those with acromegaly. In addition, there is a section highlighting the effect of acromegaly treatment on glucose metabolism, including approved drugs as well as those currently being explored. It also reviews the observations of the use of antidiabetic drugs in acromegaly patients.

Glucose homeostasis is an important feature of the comorbidity of acromegaly and has further care. Although several trials have tested glucose homeostasis in acromegaly, more basic, translational, and clinical investigations are still needed to better consider the underlying mechanisms and how to better report them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CV:

Cardiovascular

CVD:

Cardiovascular disease

DM:

Diabetes mellitus

ERK:

Extracellular signal-regulated protein kinase

FA:

Fatty acid

FBG:

Fasting blood glucose

FFAs:

Free fatty acids

GH:

Growth hormone

gp:

Glycoprotein

HDL:

High-density lipoprotein

HOMA%B:

Homeostatic model assessment for β-cell function

HOMA%S:

Homeostatic model assessment for insulin sensitivity

HOMA:

Homeostatic model assessment

HTN:

Hypertension

IFG:

Impaired fasting glucose

IFN-γ:

Interferon-gamma

IGF-1:

Insulin-like growth factor-1

IL:

Interleukin

IR:

Insulin resistance

IRS:

Insulin receptor substrate

IS:

Insulin sensitivity

JAK:

Janus family of tyrosine kinases

LDL:

Low-density lipoprotein

MAP:

Mitogen-activated protein

PKC:

Protein kinase C

STAT:

Signal transducers and activators of transcription

T2DM:

Type 2 diabetes mellitus

TAG:

Triacylglycerol

TNF-α:

Tumor necrosis factor-α

WHO:

World Health Organization

References

  • Abella V, Scotece M, Conde J, et al. Leptin in the interplay of inflammation, metabolism and immune system disorders. Nat Rev Rheumatol. 2017;13(2):100–9.

    CAS  Google Scholar 

  • Afroz A, Ali L, Karim MN, et al. Glycaemic control for people with type 2 diabetes mellitus in Bangladesh – an urgent need for optimization of management plan. Sci Rep. 2019;9(1):1–10.

    CAS  Google Scholar 

  • Alexopoulou O, Bex M, Kamenicky P, et al. Prevalence and risk factors of impaired glucose tolerance and diabetes mellitus at diagnosis of acromegaly: a study in 148 patients. Pituitary. 2014;17(1):81–9.

    CAS  Google Scholar 

  • Aragones G, Ardid-Ruiz A, Ibars M, et al. Modulation of leptin resistance by food compounds. Mol Nutr Food Res. 2016;60(8):1789–803.

    CAS  Google Scholar 

  • Boero L, Cuniberti L, Magnani N, et al. Increased oxidized low density lipoprotein associated with high ceruloplasmin activity in patients with active acromegaly. Clin Endocrinol. 2010;72(5):654–60.

    CAS  Google Scholar 

  • Bolfi F, Neves AF, Boguszewski CL, et al. Mortality in acromegaly decreased in the last decade: a systematic review and metaanalysis. Eur J Endocrinol. 2018;179(1):59–71.

    CAS  Google Scholar 

  • Bramnert M, Segerlantz M, Laurila E, et al. Growth hormone replacement therapy induces insulin resistance by activating the glucose-fatty acid cycle. J Clin Endocrinol Metab. 2003;88(4):1455–63.

    CAS  Google Scholar 

  • Carlyle M, Jones OB, Kuo JJ, et al. Chronic cardiovascular and renal actions of leptin: role of adrenergic activity. Hypertension. 2005;39(2):496–501.

    Google Scholar 

  • Casabiell X, Pineiro V, Peino R, et al. Gender differences in both spontaneous and stimulated leptin secretion by human omental adipose tissue in vitro: dexamethasone and estradiol stimulate leptin release in women, but not in men. J Clin Endocrinol Metab. 1998;83(6):2149–55.

    CAS  Google Scholar 

  • Casanueva FF, Dieguez C. Interaction between body composition, leptin and growth hormone status. Baillieres Clin Endocrinol Metab. 1998;12(2):297–314.

    CAS  Google Scholar 

  • Chen C, Cohrs CM, Stertmann J, et al. Human beta cell mass and function in diabetes: recent advances in knowledge and technologies to understand disease pathogenesis. Mol Metab. 2017;6(9):943–57.

    CAS  Google Scholar 

  • Chung WK, Erion K, Florez JC, et al. Precision medicine in diabetes: a consensus report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2020;43:1617–35.

    CAS  Google Scholar 

  • Corkey BE. Banting lecture 2011: hyperinsulinemia: cause or consequence? Diabetes. 2012;61(1):4–13.

    CAS  Google Scholar 

  • De Luis DA, Perez Castrillon JL, Duenas A. Leptin and obesity. Minerva Med. 2009;100(3):229–36.

    Google Scholar 

  • DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979;237:G214–23.

    Google Scholar 

  • Denroche HC, Levi J, Wideman RD, et al. Leptin therapy reverses hyperglycemia in mice with streptozotocin-induced diabetes, independent of hepatic leptin signaling. Diabetes. 2011;60(5):1414–23.

    CAS  Google Scholar 

  • Facey A, Dilworth L, Irving R. A review of the leptin hormone and the association with obesity and diabetes mellitus. J Diabetes Metab. 2017;8(3):1–3.

    Google Scholar 

  • Farcas AD, Rusu A, Stoia MA, et al. Plasma leptin, but not resistin, TNF-alpha and adiponectin, is associated with echocardiographic parameters of cardiac remodeling in patients with coronary artery disease. Cytokine. 2018;103:46–9.

    CAS  Google Scholar 

  • Farooqi IS, Matarese G, Lord GM, et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest. 2002;110(8):1093–103.

    CAS  Google Scholar 

  • Febbraio MA. gp130 receptor ligands as potential therapeutic targets for obesity. J Clin Invest. 2007;117(4):841–9.

    CAS  Google Scholar 

  • Flier JS. Leptin expression and action: new experimental paradigms. Proc Natl Acad Sci U S A. 1997;94(9):4242–5.

    CAS  Google Scholar 

  • Frara S, Maffezzoni F, Mazziotti G, et al. Current and emerging aspects of diabetes mellitus in acromegaly. Trends Endocrinol Metab. 2016;27(7):470–83.

    CAS  Google Scholar 

  • Friedman JM. Leptin and the endocrine control of energy balance. Nat Metab. 2019;1(8):754–64.

    CAS  Google Scholar 

  • Gadelha MR, Kasuki L, Lim DST, et al. Systemic complications of acromegaly and the impact of the current treatment landscape: an update. Endocr Rev. 2019;40(1):268–332.

    Google Scholar 

  • German JP, Wisse BE, Thaler JP, et al. Leptin deficiency causes insulin resistance induced by uncontrolled diabetes. Diabetes. 2010;59(7):1626–34.

    CAS  Google Scholar 

  • Ghantous CM, Azrak Z, Hanache S, et al. Differential role of leptin and adiponectin in cardiovascular system. Int J Endocrinol. 2015;2015:534320.

    CAS  Google Scholar 

  • Gonzalez B, Vargas G, de Los Monteros ALE, et al. Persistence of diabetes and hypertension after multimodal treatment of acromegaly. J Clin Endocrinol Metab. 2018;103(6):2369–75.

    Google Scholar 

  • Hawkes CP, Grimberg A. Insulin-like growth-factor-I is a marker for the nutritional state. Pediatr Endocrinol Rev. 2015;13(2):499–511.

    Google Scholar 

  • Jenks MZ, Fairfield HE, Johnson EC, et al. Sex steroid hormones regulate leptin transcript accumulation and protein secretion in 3T3-L1 cells. Sci Rep. 2017;7(1):8232.

    Google Scholar 

  • Kalaichelvi S, Somasundram K. Prevalence of insulin resistance among patients with cirrhosis of liver in Government Royapettah Hospital, Chennai. IAIM. 2016;3(7):21–7.

    Google Scholar 

  • Knerr I, Schuster S, Nomikos P, et al. Gene expression of adrenomedullin, leptin, their receptors and neuropeptide Y in hormone-secreting and non-functioning pituitary adenomas, meningiomas and malignant intracranial tumours in humans. Neuropathol Appl Neurobiol. 2001;27(3):215–22.

    CAS  Google Scholar 

  • Lamberts SWJ, Hofland LJ. Anniversary review: Octreotide, 40 years later. Eur J Endocrinol. 2019;181(5):173–183.

    Google Scholar 

  • Levy JC, Matthews DR, Hermans MP. Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care. 1998;21(12):2191–2.

    Google Scholar 

  • Li X, Zhou Z-G, Qi H, et al. Replacement of insulin by fasting C-peptide in modified homeostasis model assessment to evaluate insulin resistance and islet beta cell function. J Cent South Univ Med Sci. 2004;29(4):419–23.

    CAS  Google Scholar 

  • Lin S, Thomas TC, Storlien LH, et al. Development of high fat diet induced obesity and leptin resistance in C57Bl/6J mice. Int J Obes. 2000;24(5):639–46.

    CAS  Google Scholar 

  • Matthews D, Hosker J, Rudenski A, et al. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.

    CAS  Google Scholar 

  • Mironova D, Hanjieva-Darlenska T. Effect of metformin and empagliflozin on adiponectin and leptin levels in rat model of hypo- and hyperthyroidism. Biotechnol Biotechnol Equip. 2020;35(1):208–13.

    Google Scholar 

  • Murakami R, Saisho Y, Watanabe Y, et al. Pancreas fat and β cell mass in humans with and without diabetes: an analysis in the Japanese population. J Clin Endocrinol Metab. 2017;102(9):3251–60.

    Google Scholar 

  • Myers MG, Leibel RL, Seeley RJ, et al. Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol Metab. 2010;21(11):643–51.

    CAS  Google Scholar 

  • Newsholme P, Cruzat VF, Keane KN, et al. Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J. 2016;473(24):4527–50.

    CAS  Google Scholar 

  • Nielsen S, Moller N, Christiansen JS, et al. Pharmacological antilipolysis restores insulin sensitivity during growth hormone exposure. Diabetes. 2001;50(10):2301–8.

    CAS  Google Scholar 

  • Pivonello R, Auriemma RS, Grasso LF, et al. Complications of acromegaly, cardiovascular, respiratory and metabolic comorbidities. Pituitary. 2017;20(1):46–62.

    Google Scholar 

  • Ramos-Levi AM, Marazuela M. Cardiovascular comorbidities in acromegaly: an update on their diagnosis and management. Endocrine. 2017;55(2):346–59.

    CAS  Google Scholar 

  • Ramos-Levi AM, Marazuela M. Bringing cardiovascular comorbidities in acromegaly to an update. How should we diagnose and manage them? Front Endocrinol. 2019;10:120.

    Google Scholar 

  • Rosenbaum M, Nicolson M, Hirsch J, et al. Effects of gender, body composition, and menopause on plasma concentrations of leptin. J Clin Endocrinol Metab. 1996;81(9):3424–7.

    CAS  Google Scholar 

  • Scarpace PJ, Zhang Y. Elevated leptin: consequence or cause of obesity? Front Biosci. 2007;12(3531):3544.

    Google Scholar 

  • Vila G, Jorgensen JOL, Luger A, et al. Insulin resistance in patients with acromegaly. Front Endocrinol. 2019;10:509.

    Google Scholar 

  • Vilar L, Naves LA, Costa SS, et al. Increase of classic and nonclassic cardiovascular risk factors in patients with acromegaly. Endocr Pract. 2007;13(4):363–72.

    Google Scholar 

  • Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004;27(6):1487–95.

    Google Scholar 

  • Wang W, Lo AC. Diabetic retinopathy: pathophysiology and treatments. Int J Mol Sci. 2018;19(6):1–14.

    Google Scholar 

  • Wawrzkiewicz-Jałowiecka A, Lalik A, Soveral G. Recent update on the molecular mechanisms of gonadal steroids action in adipose tissue. Int J Mol Sci. 2021;22(10):5226.

    Google Scholar 

  • WHO. Classification of diabetes mellitus. Geneva: World Health Organization; 2019. p. 1–40. Licence: CC BY-NC-SA 3.0 IGO 2019

    Google Scholar 

  • Wondafrash DZ, Nire’a AT, Tafere GG, et al. Thioredoxin-interacting protein as a novel potential therapeutic target in diabetes mellitus and its underlying complications. Diabetes Metab Syndr Obes. 2020;20(13):43.

    Google Scholar 

  • Zaccardi F, Webb DR, Yates T, et al. Pathophysiology of type 1 and type 2 diabetes mellitus: a 90-year perspective. Postgrad Med J. 2016;92(1084):63–9.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hind Shakir Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ahmed, H.S. (2023). Serum Leptin as a Biomarker in Diabetes. In: Patel, V.B., Preedy, V.R. (eds) Biomarkers in Diabetes. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-08014-2_50

Download citation

Publish with us

Policies and ethics