Skip to main content

Biomarkers of Diabetes-Induced Nephropathy

  • Reference work entry
  • First Online:
Biomarkers in Diabetes

Abstract

Diabetic nephropathy (DN) is the leading cause of end stage renal disease. Therefore, the assessment of renal function and early diagnosis of glomerular and tubular injuries is very important measure in the management of type 1 and type 2 diabetic patients. The diagnosis of DN for years has been routinely determined by the presence of microalbuminuria (MA). Several studies have showed that presence of MA may be transient and does not necessarily reflect permanent kidney damage. There could also be glomerulo-tubular damage in diabetic patient without presenting with albuminuria. Decline in the renal function, cellular and extracellular derangements in both the glomerulus and tubules has been associated with array of biological markers which could be of help in the diagnosis, prognosis, and the overall management of the affected patients. Identifying more biomarkers of both research and clinical importance to diagnose and predict progression of kidney damage in diabetics is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AGE:

Advanced glycated end-products

AUC:

Area under curve

DAG:

Diacyl glycerol

DKD:

Diabetic kidney disease

DM:

Diabetic mellitus

DN:

Diabetic nephropathy

ECM:

Extracellular matrix

GFR:

Glomerular filtration rate

IgG:

Immunoglobulin G

L-PGDS:

Lipocalin-type prostaglandin D synthase

MA:

Microalbuminuria

MAPK:

Mitogen-activated protein kinase

NADPH:

Nicotinamide adenine di-nucleotide phosphate hydrogen

NF-ĸb:

Nuclear factor kappa b

PKC:

Protein kinase C

RAGE:

Receptors for advanced glycated end-products

ROS:

Reactive oxygen species

TGF-β1:

Tumor growth factor beta 1

VEGF:

Vascular endothelial growth factor

References

  • Adler SG, Feld S, Striker L, et al. Glomerular type IV collagen in patients with diabetic nephropathy with and without additional glomerular disease. Kidney Int. 2000;57:2084–92.

    CAS  Google Scholar 

  • Adler AI, Stevens RJ, Manley SE, et al. Development and progression of nephropathy in type 2 diabetes: the United Kingdom prospective diabetes study (UKPDS 64). Kidney Int. 2003;63(1):225–32.

    Google Scholar 

  • Agnieszka Å», Agnieszka G, Katarzyna R, et al. Role of new biomarkers for the diagnosis of nephropathy associated with diabetes type 2. Folia Med Cracov. 2015;4:21–33.

    Google Scholar 

  • Ajilore BS, Adesokan AA. Antidiabetic effects of Tetracarpidium conophorum seed on biomarkers of diabetes-induced nephropathy in rats. Asian Pac J Trop Biomed. 2018;8:593–7.

    Google Scholar 

  • Ajilore BS, Olorunnisola OS, Owoade AO. Tetracarpidium conophorum seed extract improves markers of diabetic disease progression in Streptozotocin-induced diabetic rats. Phytomedicine-Plus. 2021;1(4) https://doi.org/10.1016/j.phyplu.2021.100091.

  • Al-Rubeaan K, Siddiqui K, Al-Ghonaim MA, et al. Assessment of the diagnostic value of different biomarkers in relation to various stages of diabetic nephropathy in type 2 diabetic patients. Sci Rep. 2017;7:2684. https://doi.org/10.1038/s41598-017-02421-9.

    Article  CAS  Google Scholar 

  • Alter ML, Ott IM, von Websky K, et al. DPP-4 inhibition on top of angiotensin receptor blockade offers a new therapeutic approach for diabetic nephropathy. Kidney Blood Press Res. 2012;36:119–130.

    Google Scholar 

  • Aronson D, Rayfield EJ. How hyperglycemia promotes atherosclerosis: molecular mechanisms. Cardiovasc Diabetol. 2002;1:1.

    Google Scholar 

  • Bai S, Zeng R, Zhou Q, et al. Cdc42-interacting protein-4 promotes TGF-Î’1-induced epithelial-mesenchymal transition and extracellular matrix deposition in renal proximal tubular epithelial cells. Int J Biol Sci. 2012;8:859–869.

    Google Scholar 

  • Banu N, Hara H, Okamura M, et al. Urinary excretion of type IV collagen and laminin in the evaluation of nephropathy in NIDDM: comparison with urinary albumin and markers of tubular dysfunction and/or damage. Diabetes Res Clin. 1995;29(1):57–67.

    CAS  Google Scholar 

  • Barutta F, Bruno G, Matullo G, et al. MicroRNA-126 and micro−/macrovascular complications of type 1 diabetes in the EURODIAB prospective complications Study. Acta Diabetol. 2017;54:133–9.

    CAS  Google Scholar 

  • Bock F, Shahzad K, Wang H, et al. Activated protein C ameliorates diabetic nephropathy by epigenetically inhibiting the redox enzyme p66Shc. Proc Natl Acad Sci. 2013;110:648–53.

    CAS  Google Scholar 

  • Bonventre JV. Can we target tubular damage to prevent renal function decline in diabetes? Semin Nephrol. 2012;32:452–462.

    Google Scholar 

  • Bonventre JV. Kidney injury molecule-1: a translational journey. Trans Am Clin Climatol Assoc. 2014;125:293–9.

    Google Scholar 

  • Campion CG, Sanchez-Ferras O, Batchu SN. Potential role of serum and urinary biomarkers in diagnosis and prognosis of diabetic nephropathy. Can J Kidney Health Dis. 2017;4:1–18.

    Google Scholar 

  • Cao YL, Duan Y, Zhu LX, et al. TGF-b1, in association with the increased expression of connective tissue growth factor, induce the hypertrophy of the ligamentum flavum through the p38 MAPK pathway. Int J Mol Med. 2016;38:391–8.

    CAS  Google Scholar 

  • Cohen-Bucay A, Viswanathan G. Urinary markers of glomerular injury in diabetic nephropathy. Int J Nephrol. 2012;2012:1–11.

    Google Scholar 

  • Colhoun HM, Marcovecchio ML. Biomarkers of diabetic kidney disease. Diabetologia. 2018;61:996–1011.

    CAS  Google Scholar 

  • Conserva F, Gesualdo L, Papale M. A systems biology overview on human diabetic nephropathy: from genetic susceptibility to post-transcriptional and posttranslational modifications. J Diabetes Res. 2016;2016:7934504.

    Google Scholar 

  • Davani D, Kumar S, Palaia T, et al. Lipocalin-type prostaglandin D2 synthase reduces glucagon secretion in alpha TC-1 clone 6 cells via the DP1 receptor. Biochem Biophys Rep. 2015;4:224–7.

    Google Scholar 

  • Devarajan P. Neutrophil gelatinase-associated lipocalin: a promising biomarker for human acute kidney injury. Biomark Med. 2010;4:265–80.

    CAS  Google Scholar 

  • Eissa S, Matboli M, Aboushahba R, et al. Urinary exosomal microRNA panel unravels novel biomarkers for diagnosis of type 2 diabetic kidney disease. J Diabetes Complicat. 2016;30:1585–92.

    Google Scholar 

  • Fagerudd JA, Groop PH, Honkanen E, et al. Urinary excretion of TGF-β1, PDGF-BB and fibronectin in insulin-dependent diabetes mellitus patients. Kidney Int. 1997;51(63):S195–7.

    Google Scholar 

  • Fang D, Wan X, Deng W, et al. Fufang Xue Shuan Tong capsules inhibit renal oxidative stress markers and indices of nephropathy in diabetic rats. Exp Ther Med. 2012;4:871–876.

    Google Scholar 

  • Fiseha T. Urinary biomarkers for early diabetic nephropathy in type 2 diabetic patients. Biomarker Res. 2015;3:16.

    Google Scholar 

  • Gluhovschi C, Gluhovschi G, Petrica L, et al. Urinary biomarkers in the assessment of early diabetic nephropathy. J Diabetes Res. 2016;4626125:1–13. https://doi.org/10.1155/2016/4626125.

    Article  CAS  Google Scholar 

  • Gohda T, Walker WH, Wolkow P, et al. Elevated urinary excretion of immunoglobulins in nonproteinuric patients with type 1 diabetes. Am J Physiol Renal Physiol. 2012;303:F157–62.

    CAS  Google Scholar 

  • Gorin Y, Block K. Nox as a target for diabetic complications. Clin Sci (Lond). 2013;125:361–82. https://doi.org/10.1042/CS20130065.

    Article  CAS  Google Scholar 

  • Ha H, Lee HB. Oxidative stress in diabetic nephropathy: basic and clinical information. Curr Diab Rep. 2001;1(3):282–7.

    CAS  Google Scholar 

  • Hara M, Yamagata K, Tomino Y, et al. Urinary podocalyxin is an early marker for podocyte injury in patients with diabetes: establishment of a highly sensitive ELISA to detect urinary podocalyxin. Diabetologia. 2012;55:2913–9.

    CAS  Google Scholar 

  • Hinokio Y, Suzuki S, Hirai M, et al. Urinary excretion of 8-oxo-7,8-dihydro-2-deoxyguanosine as a predictor of the development of diabetic nephropathy. Diabetologia. 2002;45(6):877–82.

    CAS  Google Scholar 

  • Inoue K, Wada J, Eguchi J, et al. Urinary fetuin – a is a novel marker for diabetic nephropathy in type 2 diabetes identified by lectin microarray. PLoS One. 2013;8:e77118.

    CAS  Google Scholar 

  • Ito H, Fujita H, Takahashi T. Diagnostic biomarkers of diabetic nephropathy. Expert Opin Med Diagn. 2008;2:161–9.

    CAS  Google Scholar 

  • Jeon YK, Kim MR, Huh JE, et al. Cystatin C as an early biomarker of nephropathy in patients with type 2 diabetes. J Korean Med Sci. 2011;26(2):258–63.

    CAS  Google Scholar 

  • Jim B, Ghanta M, Qipo A, et al. Dysregulated nephrin in diabetic nephropathy of type 2 diabetes: a cross sectional study. PLoS One. 2012;7:e36041.

    CAS  Google Scholar 

  • Jomova K, Jenisova Z, Feszterova M, et al. Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol. 2011;31:95–107.

    Google Scholar 

  • Kim SR, Lee Y-H, Lee S-G, et al. Urinary N-acetyl-b-d-glucosaminidase, an early marker of diabetic kidney disease, might reflect glucose excursion in patients with type 2 diabetes. Medicine (Baltimore). 2016;95:e4114.

    CAS  Google Scholar 

  • Kimura T, Yasuda K, Yamamoto R, et al. Identification of biomarkers for development of end-stage kidney disease in chronic kidney disease by metabolomic profiling. Sci Rep. 2012;6:26138. https://doi.org/10.1038/srep26138.

    Article  CAS  Google Scholar 

  • Kotajima N, Kimura T, Kanda T, et al. Type IV collagen as an early marker for diabetic nephropathy in non-insulin-dependent diabetes mellitus. J Diabetes Complicat. 2000;14(1):13–7.

    CAS  Google Scholar 

  • Kubisz P, Stanciakova L, Sta J, et al. Endothelial and platelet markers in diabetes mellitus type 2. World J Diabetes. 2015;6(3):423–31.

    Google Scholar 

  • Lacquaniti A, Donato V, Pintaudi B, et al. Normoalbuminuric and diabetic nephropathy: tubular damage and NGAL. Acta Diabetol. 2013;50:935–42.

    CAS  Google Scholar 

  • Lai YL, Aoyama S, Ohata M, et al. Dysregulation of dimethylargininedimethylaminohydrolase/asymmetric dimethylarginine pathway in rat type II diabetic nephropathy. J Clin Biochem Nutr. 2012;51:143–149.

    Google Scholar 

  • Letizia Z, Anthony GWN, Giovanni C, et al. A more tubulocentric view of diabetic kidney disease. J Nephrol. 2017;30(6):701–17.

    Google Scholar 

  • Lever E, Sheer D. The role of nuclear organization in cancer. J Pathol. 2010;220:114–25.

    CAS  Google Scholar 

  • Lin YC, Chang YH, Yang SY, et al. Update of pathophysiology and management of diabetic kidney disease. J Formos Med Assoc. 2018;117(8):662–675.

    Google Scholar 

  • Mishra J, Mori K, Ma Q, et al. Amelioration of ischemic acute renal injury by neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol. 2004;15(12):3073–82.

    Google Scholar 

  • Narita T, Sasaki H, Hosoba M, et al. Parallel increase in urinary excretion rates of immunoglobulin G, ceruloplasmin, transferrin, and orosomucoid in normoalbuminuric type 2 diabetic patients. Diabetes Care. 2004;27:1176–81.

    CAS  Google Scholar 

  • Nauta FL, Boertien WE, Bakker SJL, et al. Glomerular and tubular damage markers are elevated in patients with diabetes. Diabetes Care. 2011;34:975–81.

    Google Scholar 

  • Niewczas MA, Gohda T, Skupien J, et al. Circulating TNF receptors 1 and 2 predict ESRD in type 2 diabetes. J Am Soc Nephrol. 2012;23(3):507–15.

    CAS  Google Scholar 

  • Okonogi H, Nishimura M, Utsunomiya Y, et al. Urinary type IV collagen excretion reflects renal morphological alterations and type IV collagen expression in patients with type 2 diabetes mellitus. Clin Nephrol. 2001;55(5):357–64.

    CAS  Google Scholar 

  • Palacios HH, Yendiuri BB, Parvathaneni VB, et al. Mitochondrion-specific antioxidants as drug treatments for Alzheimer disease. CNS Neurol Disord Drug Target. 2011;10:149–162.

    Google Scholar 

  • Papadopoulou-Marketou N, Skevaki C, Kosteria I, et al. NGAL and cystatin C: two possible early markers of diabetic nephropathy in young patients with type 1 diabetes mellitus: one year follow up. Hormones. 2014;14:232–40.

    Google Scholar 

  • Papadopoulou-Marketou N, Kanaka-Gantenbein C, Marketos N, et al. Biomarkers of diabetic nephropathy: a 2017 update. Crit Rev Clin Lab Sci. 2017;54(5):326–42. https://doi.org/10.1080/10408363.2017.1377682.

    Article  CAS  Google Scholar 

  • Patari A, Forsblom C, Havana M, et al. Nephrinuria in diabetic nephropathy of type 1 diabetes. Diabetes. 2003;52:2969–74.

    Google Scholar 

  • Petrica L, Vlad A, Gluhovschi G, et al. Proximal tubule dysfunction is associated with podocyte damage biomarkers nephrin and vascular endothelial growth factor in type 2 diabetes mellitus patients: a crosssectional study. PLoS One. 2014;9:e112538.

    Google Scholar 

  • Piarulli F, Sartore G, Ceriello A, et al. Relationship between glyco-oxidation, antioxidant status and microalbuminuria in type 2 diabetic patients. Diabetologia. 2009;52:1419–25.

    CAS  Google Scholar 

  • Romesh K. Non-renal replacement modalities in treatment of diabetic nephropathy. Int J Diab Dev. Countries. 2000;20:127–132.

    Google Scholar 

  • Shore N, Khurshid R, Saleem M. Alpha-1 microglobulin: a marker for early detection of tubular disorders in diabetic nephropathy. J Ayub Med Coll Abbottabad. 2010;22(4):53–5.

    Google Scholar 

  • Simpson K, Wonnacott A, Fraser DJ, et al. MicroRNAs in diabetic nephropathy: from biomarkers to therapy. Curr Diab Rep. 2016;16:35.

    Google Scholar 

  • Takahashi M. Increased urinary fibronectin excretion in type II diabetic patients with microalbuminuria. Nihon Jinzo Gakkai Shi. 1995;37(6):336–42.

    CAS  Google Scholar 

  • Takizawa H, Satoh T, Kurusu A, et al. Increase of urinary type IV collagen in normoalbuminuric patients with impaired glucose tolerance. Nephron. 1998;79(4):474–5.

    CAS  Google Scholar 

  • Thrailkill KM, Moreau CS, Cockrell GE, et al. Disease and gender-specific dysregulation of NGAL and MMP-9 in type 1 diabetes mellitus. Endocrine. 2010;37:336–43.

    CAS  Google Scholar 

  • Torffvit O. Urinary sulphated glycosaminoglycans and TammHorsfall protein in type 1 diabetic patients. Scand J Urol Nephrol. 1999;33(5):328–32.

    CAS  Google Scholar 

  • Ueta I, Takamatsu K, Hashimoto K. Urinary glycosaminoglycans in patients with incipient diabetic nephropathy. Nihon Jinzo Gakkai Shi. 1995;37(1):17–23.

    CAS  Google Scholar 

  • Uwaezuoke SN. The role of novel biomarkers in predicting diabetic nephropathy: a review. Int J Nephrol Renov Dis. 2017;10:221–31.

    CAS  Google Scholar 

  • Wada T, Furuichi K, Sakai N, et al. Up-regulation of monocyte chemoattractant protein-1 in tubulointerstitial lesions of human diabetic nephropathy. Kidney Int. 2000;58:1492–9.

    CAS  Google Scholar 

  • Wang G, Lai FM, Lai KB, et al. Messenger RNA expression of podocyte-associated molecules in the urinary sediment of patients with diabetic nephropathy. Nephron Clin Pract. 2007;106:169–79.

    Google Scholar 

  • Wang F, Tian F, Whitman SA, et al. Regulation of transforming growth factor I21-dependent aldose reductase expression by the Nrf2 signal pathway in human mesangial cells. Eur J Cell Biol. 2012;91:774–781.

    Google Scholar 

  • Wu LL, Chiou CC, Chang PY, et al. Urinary 8OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chem Acta. 2004;339(1–2):1–9.

    CAS  Google Scholar 

  • Xu X, Xiao L, Xiao P. A glimpse of matrix metalloproteinases in diabetic nephropathy. Curr Med Chem. 2014;21:3244–60.

    CAS  Google Scholar 

  • Xu X, Zhu X, Ma M, et al. p66Shc: a novel biomarker of tubular oxidative injury in patients with diabetic nephropathy. Sci Rep. 2016;6:29302.

    CAS  Google Scholar 

  • Zurbig P, Jerums G, Hovind P, et al. Urinary proteomics for early diagnosis in diabetic nephropathy. Diabetes. 2012;61:3304–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bamidele Stephen Ajilore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ajilore, B.S., Ajilore, B.O. (2023). Biomarkers of Diabetes-Induced Nephropathy. In: Patel, V.B., Preedy, V.R. (eds) Biomarkers in Diabetes. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-08014-2_46

Download citation

Publish with us

Policies and ethics