Skip to main content

Exercise and Microcirculation in Hypertension

  • Chapter
  • First Online:
Exercise, Sports and Hypertension

Abstract

Regulation of skeletal muscle blood flow is a complex process, which involves an integration of multiple mechanisms and a number of vasoactive compounds. Skeletal muscle blood flow may be affected by changes in microvascular structure or function which occur in pathological conditions such as hypertension with subsequent increase in vascular resistance. Exercise training may elicit beneficial effects on skeletal muscle blood flow by inducing favorable microvascular remodeling, capillary angiogenesis, and modulating vasomotor reactivity of small arteries and arterioles. In particular, activation of angiogenic process, with increase in capillary network, seems to have the major influence in ameliorating local blood flow in several tissues including skeletal muscle. Furthermore, phenotypic expression of skeletal muscle fiber type also has powerful influences on vascular structure and function in skeletal muscle, which may influence training-induced vascular adaptations in skeletal muscle. Recently, new approaches in exercise training have highlighted the key role of miRNAs in the modulation of hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levy BI, Ambrosio G, Pries AR, Struijker-Boudier HA. Microcirculation in hypertension: a new target for treatment? Circulation. 2001;104:735–40.

    Article  CAS  PubMed  Google Scholar 

  2. Rizzoni D, Porteri E, Boari GE, De Ciuceis C, Sleiman I, Muiesan ML, Castellano M, Miclini M, Agabiti-Rosei E. Prognostic significance of small-artery structure in hypertension. Circulation. 2003;108:2230–5.

    Article  PubMed  Google Scholar 

  3. De Ciuceis C, Porteri E, Rizzoni D, Rizzardi N, Paiardi S, Boari GEM, Miclini M, Zani F, Muiesan ML, Donato F, Salvetti M, Castellano M, Tiberio GAM, Giulini SM, Rosei EA. Structural alterations of subcutaneous small-resistance arteries may predict major cardiovascular events in patients with hypertension. Am J Hypertens. 2007;20(8):846–52.

    Article  PubMed  Google Scholar 

  4. Mathiassen ON, Buus NH, Sihm I, Thybo NK, Mørn B, Schroeder AP, Thygesen K, Aalkjaer C, Lederballe O, Mulvany MJ, Christensen KL. Small artery structure is an independent predictor of cardiovascular events in essential hypertension. J Hypertens. 2007;25(5):1021–6.

    Article  CAS  PubMed  Google Scholar 

  5. Theuerle JD, et al. Impaired retinal microvascular function predicts long-term adverse events in patients with cardiovascular disease. Cardiovasc Res. 2021;117:1949–57.

    Article  CAS  PubMed  Google Scholar 

  6. Agabiti Rosei E, Heagerty AM, Rizzoni D. Effects of antihypertensive treatment on small artery remodelling. J Hypertens. 2009;27(6):1107–14.

    Article  CAS  PubMed  Google Scholar 

  7. Rogers MW, Probst MM, Gruber JJ, Berger R, Boone JB. Differential effects of exercise training intensity on blood pressure and cardiovascular responses to stress in borderline hypertensive humans. J Hypertens. 1996;14:1369–75.

    Article  CAS  PubMed  Google Scholar 

  8. Fagard RH, Cornelissen VA. Effect of exercise on blood pressure control in hypertensive patients. Eur J Cardiovasc Prev Rehabil. 2007;14(1):12–7.

    Article  PubMed  Google Scholar 

  9. Cornelissen VA, Fagard RH. Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors. Hypertension. 2005;46:667–75.

    Article  CAS  PubMed  Google Scholar 

  10. Visseren FLJ, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M, Benetos A, Biffi A, Boavida JM, Capodanno D, Cosyns B, Crawford C, Davos CH, Desormais I, Di Angelantonio E, Franco OH, Halvorsen S, Hobbs FDR, Hollander M, Jankowska EA, Michal M, Sacco S, Sattar N, Tok-gozoglu L, Tonstad S, Tsioufis KP, van Dis I, van Gelder IC, Wanner C, Williams B, ESC Scientific Document Group. ESC Scientific Document Group. 2021 ESC guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021;42(34):3227–337.

    Article  PubMed  Google Scholar 

  11. Roque FR, Briones AM, García-Redondo AB, Galán M, Martínez-Revelles S, Avendaño MS, Cachofeiro V, Fernandes T, Vassallo DV, Oliveira EM, Salaices M. Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension. Br J Pharmacol. 2013;168(3):686–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Amaral SL, Zorn TM, Michelini LC. Exercise training normalizes wall-to-lumen ratio of the gracilis muscle arterioles and reduces pressure in spontaneously hypertensive rats. J Hypertens. 2000;18:1563–72.

    Article  CAS  PubMed  Google Scholar 

  13. Melo RM, Martinho E, Michelini LC. Training induced, pressure-lowering effect in SHR: wide effects on circulatory profile of exercised and non-exercised muscles. Hypertension. 2003;42:851–7.

    Article  CAS  PubMed  Google Scholar 

  14. Hansen AH, Nielsen JJ, Saltin B, Hellsten Y. Exercise training normalizes skeletal muscle vascular endothelial growth factor levels in patients with essential hypertension. J Hypertens. 2010;28:1176–85.

    Article  CAS  PubMed  Google Scholar 

  15. Andersen P, Saltin B. Maximal perfusion of skeletal muscle in man. J Physiol. 1985;366:233–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nyberg M, Gliemann L, Hellsten Y. Vascular function in health, hypertension, and diabetes: effect of physical activity on skeletal muscle microcirculation. Scand J Med Sci Sports. 2015;25(Suppl 4):60–73.

    Article  PubMed  Google Scholar 

  17. Remensnyder JP, Mitchell JH, Sarnoff SJ. Functional sympatholysis during muscular activity. Observations on influence of carotid sinus on oxygen uptake. Circ Res. 1962;11:370–80.

    Article  CAS  PubMed  Google Scholar 

  18. Wilson JR, Kapoor SC. Contribution of prostaglandins to exercise-induced vasodilation in humans. Am J Physiol. 1993;265(1 Pt 2):H171–5.

    CAS  PubMed  Google Scholar 

  19. Shoemaker JK, Naylor HL, Pozeg ZI, Hughson RL. Failure of prostaglandins to modulate the time course of blood flow during dynamic forearm exercise in humans. J Appl Physiol. 1996;81:1516–21.

    Article  CAS  PubMed  Google Scholar 

  20. Mortensen SP, Gonzalez-Alonso J, Damsgaard R, Saltin B, Hellsten Y. Inhibition of nitric oxide and prostaglandins, but not endothelial-derived hyperpolarizing factors, reduces blood flow and aerobic energy turnover in the exercising human leg. J Physiol. 2007;581:853–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Balon TW, Nadler JL. Nitric oxide release is present from incubated skeletal muscle preparations. J Appl Physiol. 1994;77(6):2519–21.

    Article  CAS  PubMed  Google Scholar 

  22. Vallance P, Collier J, Moncada S. Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet. 1989;2(8670):997–1000.

    Article  CAS  PubMed  Google Scholar 

  23. Radegran G, Saltin B. Nitric oxide in the regulation of vasomo-tor tone in human skeletal muscle. Am J Physiol Heart Circ Physiol. 1999;276:H1951–60.

    Article  CAS  Google Scholar 

  24. Boushel R, Langberg H, Gemmer C, Olesen J, Crameri R, Scheede C, Sander M, Kjaer M. Combined inhibition of nitric oxide and prostaglandins reduces human skeletal muscle blood flow during exercise. J Physiol. 2002;543:691–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mortensen SP, Nyberg M, Thaning P, Saltin B, Hellsten Y. Adenosine contributes to blood flow regulation in the exercising human leg by increasing prostaglandin and nitric oxide formation. Hypertension. 2009;53:993–9.

    Article  CAS  PubMed  Google Scholar 

  26. Hellsten Y, Nyberg M, Jensen LG, Mortensen SP. Vasodilator interactions in skeletal muscle blood flow regulation. J Physiol. 2012;590(Pt 24):6297–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rongen GA, Smits P, Thien T. Characterization of ATP-induced vasodilation in the human forearm vascular bed. Circulation. 1994;90(4):1891–8.

    Article  CAS  PubMed  Google Scholar 

  28. Rosenmeier JB, Hansen J, Gonzalez-Alonso J. Circulating ATP-induced vasodilatation overrides sympathetic vasoconstrictor activity in human skeletal muscle. J Physiol. 2004;558(Pt 1):351–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jendzjowsky NG, DeLorey DS. Shortterm exercise training enhances functional sympatholysis through a nitric oxide-dependent mechanism. J Physiol. 2013;591(Pt 6):1535–49.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pohl U, Holtz J, Busse R, Bassenge E. Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension. 1986;8(1):37–44.

    Article  CAS  PubMed  Google Scholar 

  31. Hoier B, Nordsborg N, Andersen S, Jensen L, Nybo L, Bangsbo J, Hellsten Y. Pro- and anti-angiogenic factors in human skeletal muscle in response to acute exercise and training. J Physiol. 2012;590(Pt 3):595–606.

    Article  CAS  PubMed  Google Scholar 

  32. Laughlin MH, Woodman CR, Schrage WG, Gute D, Price EM. Interval sprint training enhances endothelial function and eNOS content in some arteries that perfuse white gastrocnemius muscle. J Appl Physiol. 2004;96:233–44.

    Article  CAS  PubMed  Google Scholar 

  33. Armstrong RB, Laughlin MH. Exercise blood flow patterns within and among rat muscles after training. Am J Physiol Heart Circ Physiol. 1984;246:H59–68.

    Article  CAS  Google Scholar 

  34. Olfert IM, Birot O. Importance of anti-angiogenic factors in the regulation of skeletal muscle angiogenesis. Microcirculation. 2011;18:316–30.

    Article  CAS  PubMed  Google Scholar 

  35. Millauer B, Wizigmann-Voos S, Schnürch H, Martinez R, Møller NP, Risau W, Ullrich A. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell. 1993;72:835–46.

    Article  CAS  PubMed  Google Scholar 

  36. Hoffner L, Nielsen JJ, Langberg H, Hellsten Y. Exercise but not prostanoids enhance levels of vascular endothelial growth factor and other proliferative agents in human skeletal muscle interstitium. J Physiol. 2003;550(Pt 1):217–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Tsurumi Y, Murohara T, Krasinski K, Chen D, Witzenbichler B, Kearney M, Couffinhal T, Isner JM. Reciprocal relation between VEGF and NO in the regulation of endothelial integrity. Nat Med. 1997;3:879–86.

    Article  CAS  PubMed  Google Scholar 

  38. Malek MH, Olfert IM. Global deletion of thrombospondin-1 increases cardiac and skeletal muscle capillarity and exercise capacity in mice. Exp Physiol. 2009;94:749–60.

    Article  CAS  PubMed  Google Scholar 

  39. Ryan NA, Zwetsloot KA, Westerkamp LM, Hickner RC, Pofahl WE, Gavin TP. Lower skeletal muscle capillarization and VEGF expression in aged vs. young men. J Appl Physiol. 2006;100(1):178–85.

    Article  CAS  PubMed  Google Scholar 

  40. Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev. 2011;91:1447–531.

    Article  CAS  PubMed  Google Scholar 

  41. Smerdu V, Karsch-Mizrachi I, Campione M, Leinwand L, Schiaffino S. Type IIx myosin heavy chain transcripts are expressed in type IIb fibers of human skeletal muscle. Am J Physiol. 1994;267:C1723–8.

    Article  CAS  PubMed  Google Scholar 

  42. Hagiwara N. Genetic dissection of the physiological role of skeletal muscle in metabolic syndrome. New J Sci. 2014;2014:1e21.

    Article  CAS  Google Scholar 

  43. Mizunoya W, Iwamoto Y, Shirouchi B, Sato M, Komiya Y, Razin FR, et al. Dietary fat influences the expression of contractile and metabolic genes in rat skeletal muscle. PLoS One. 2013;8(11):e80152–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rizzoni D, Porteri E, Castellano M, Bettoni G, Muiesan ML, Muiesan P, Giulini SM, Agabiti-Rosei E. Vascular hypertrophy and remodeling in secondary hypertension. Hypertension. 1996;28(5):785–90.

    Article  CAS  PubMed  Google Scholar 

  45. Rizzoni D, Porteri E, Guefi D, Piccoli A, Castellano M, Pasini G, Muiesan ML, Mulvany MJ, Rosei EA. Cellular hypertrophy in subcutaneous small arteries of patients with renovascular hypertension. Hypertension. 2000;35(4):931–5.

    Article  CAS  PubMed  Google Scholar 

  46. Rizzoni D, Porteri E, Guelfi D, Muiesan ML, Valentini U, Cimino A, Girelli A, Rodella L, Bianchi R, Sleiman I, Rosei EA. Structural alterations in subcutaneous small arteries of normotensive and hypertensive patients with non-insulin-dependent diabetes mellitus. Circulation. 2001;103(9):1238–44.

    Article  CAS  PubMed  Google Scholar 

  47. De Ciuceis C, Porteri E, Rizzoni D, Corbellini C, La Boria E, Boari GEM, Pilu A, Mittempergher F, Di Betta E, Casella C, Nascimbeni R, Rosei CA, Ruggeri G, Caimi L, Rosei EA. Effects of weight loss on structural and functional alterations of subcutaneous small arteries in obese patients. Hypertension. 2011;58(1):29–36.

    Article  PubMed  CAS  Google Scholar 

  48. Grassi G, Seravalle G, Scopelliti F, Dell'Oro R, Fattori L, Quarti-Trevano F, Brambilla G, Schiffrin EL, Mancia G. Structural and functional alterations of subcutaneous small resistance arteries in severe human obesity. Obesity (Silver Spring). 2010;18(1):92–8.

    Article  CAS  Google Scholar 

  49. Izzard AS, Rizzoni D, Agabiti Rosei E, Haegerty AM. Small artery structure and hypertension: adaptive changes and target organ damage. J Hypertens. 2005;23(2):247–50.

    Article  CAS  PubMed  Google Scholar 

  50. Park JB, Schiffrin EL. Small artery remodeling is the most prevalent (earliest?) form of target organ damage in mild essential hypertension. J Hypertens. 2001;19(5):921–30.

    Article  CAS  PubMed  Google Scholar 

  51. Ritt M, et al. Analysis of retinal arteriolar structure in never-treated patients with essential hypertension. J Hypertens. 2008;26:1427–34.

    Article  CAS  PubMed  Google Scholar 

  52. Kock E, et al. Morphometric analysis of small arteries in the human retina using adaptive optics imaging: relationship with blood pressure and focal vascular changes. J Hypertens. 2014;32(4):890–8.

    Article  CAS  Google Scholar 

  53. Laurent S, Boutouyrie P. The structural factor of hypertension: large and small artery alterations. Circ Res. 2015;116(6):1007–21.

    Article  CAS  PubMed  Google Scholar 

  54. Rizzoni D, Palombo C, Porteri E, Muiesan ML, Kozàkovà M, La Canna G, Nardi M, Guelfi D, Salvetti M, Morizzo C, Vittone F, Rosei EA. Relationships between coronary flow vasodilator capacity and small artery remodelling in hypertensive patients. J Hypertens. 2003;21(3):625–31.

    Article  CAS  PubMed  Google Scholar 

  55. Rizzoni D, De Ciuceis C, Porteri E, Paiardi S, Boari GE, Mortini P, Cornali C, Cenzato M, Rodella LF, Borsani E, Rizzardi N, Platto C, Rezzani R, Rosei EA. Altered structure of small cerebral arteries in patients with essential hypertension. J Hypertens. 2009;27(4):838–45.

    Article  CAS  PubMed  Google Scholar 

  56. Conway J. Hemodynamic aspects of essential hypertension in humans. Physiol Rev. 1984;64:617–60.

    Article  CAS  PubMed  Google Scholar 

  57. Hernandez N, Torres SH, Finol HJ, Vera O. Capillary changes in skeletal muscle of patients with essential hypertension. Anat Rec. 1999;256:425–32.

    Article  CAS  PubMed  Google Scholar 

  58. Debbabi H, Uzan L, Mourad JJ, Safar M, Levy BI. Increased skin capillary density in treated essential hypertensive patients. Am J Hypertens. 2006;19:477–83.

    Article  PubMed  Google Scholar 

  59. Paiardi S, Rodella LF, De Ciuceis C, Porteri E, Boari GE, Rezzani R, Rizzardi N, Platto C, Tiberio GA, Giulini SM, Rizzoni D, Agabiti-Rosei E. Immunohistochemical evaluation of microvascular rarefaction in hypertensive humans and in spontaneously hypertensive rats. Clin Hemorheol Microcirc. 2009;42(4):259–68.

    Article  CAS  PubMed  Google Scholar 

  60. Henrich HA, Romen W, Heimgartner W, Hartung E, Baumer F. Capillary rarefaction characteristic of the skeletal muscle of hypertensive patients. Klin Wochenschr. 1988;66:54–60.

    Article  CAS  PubMed  Google Scholar 

  61. Noon JP, Walker BR, Webb DJ, et al. Impaired micro-vascular dilatation and capillary rarefaction in young adults with a predisposition to high blood pressure. J Clin Invest. 1997;99:1873–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gliemann L, Buess R, Nyberg M, Hoppeler H, Odriozola A, Thaning P, Hellsten Y, Baum O, Mortensen SP. Capillary growth, ultrastructure remodelling and exercise training in skeletal muscle of essential hypertensive patients. Acta Physiol (Oxf). 2015;214(2):210–20.

    Article  CAS  Google Scholar 

  63. Greene AS, Amaral SL. Microvascular angiogenesis and the renin-angiotensin system. Curr Hypertens Rep. 2002;4:56–62.

    Article  PubMed  Google Scholar 

  64. Flammer AJ, Lüscher TF. Human endothelial dysfunction: EDRFs. Pflugers Arch. 2010;459(6):1005–13.

    Article  CAS  PubMed  Google Scholar 

  65. Taddei S, Virdis A, Ghiadoni L, Magagna A, Salvetti A. Vitamin C improves endothelium-dependent vasodilation by restoring nitric oxide activity in essential hypertension. Circulation. 1998;97:2222–9.

    Article  CAS  PubMed  Google Scholar 

  66. Virdis A, Bacca A, Colucci R, Duranti E, Fornai M, Materazzi G, Ippolito C, Bernardini N, Blandizzi C, Bernini G, Taddei S. Endothelial dysfunction in small arteries of essential hypertensive patients: role of cyclooxygenase-2 in oxidative stress generation. Hypertension. 2013;62(2):337–44.

    Article  CAS  PubMed  Google Scholar 

  67. Touyz RM, Briones AM. Reactive oxygen species and vascular biology: implications in human hypertension. Hypertens Res. 2011;34:5–14.

    Article  CAS  PubMed  Google Scholar 

  68. Hellsten Y, Jensen L, Thaning P, Nyberg M, Mortensen S. Impaired formation of vasodilators in peripheral tissue in essential hypertension is normalized by exercise training: role of adenosine and prostacyclin. J Hypertens. 2012;30(10):2007–14.

    Article  CAS  PubMed  Google Scholar 

  69. Suvorava T, Lauer N, Harm PD, Kojda G, Harm PD. Physical inactivity causes endothelial dysfunction in healthy young mice. J Am Coll Cardiol. 2004;44(6):1320–7.

    Article  CAS  PubMed  Google Scholar 

  70. Nyberg M, Jensen LG, Thaning P, Hellsten Y, Mortensen SP. Role of nitric oxide and prostanoids in the regulation of leg blood flow and blood pressure in humans with essential hypertension: effect of high intensity aerobic training. J Physiol. 2012;590(Pt 6):1481–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. McEniery CM, Wilkinson IB, Jenkins DG, Webb DJ. Endogenous endothelin-1 limits exercise-induced vasodilation in hypertensive humans. Hypertension. 2002;40(2):202–6.

    Article  CAS  PubMed  Google Scholar 

  72. Barrett-O’Keefe Z, Ives SJ, Trinity JD, Morgan G, Rossman MJ, Donato AJ, Runnels S, Morgan DE, Gmelch BS, Bledsoe AD, Richardson RS, Wray DW. Endothelin-A-mediated vasoconstriction during exercise with advancing age. J Gerontol A Biol Sci Med Sci. 2015;70(5):554–65.

    Article  PubMed  CAS  Google Scholar 

  73. Cardillo C, Kilcoyne CM, Waclawiw M, Cannon RO III, Panza JA. Role of endothelin in the increased vascular tone of patients with essential hypertension. Hypertension. 1999;33(2):753–8.

    Article  CAS  PubMed  Google Scholar 

  74. Nyberg M, Mortensen SP, Hellsten Y. Physical activity opposes the age related increase in skeletal muscle and plasma endothelin-1 levels and normalizes plasma endothelin-1 levels in individuals with essential hypertension. Acta Physiol (Oxf). 2013;207(3):524–35.

    Article  CAS  Google Scholar 

  75. Zhao W, Swanson SA, Ye J, Li X, Shelton JM, Zhang W, Thomas GD. Reactive oxygen species impair sympathetic vasoregulation in skeletal muscle in angiotensin II-dependent hypertension. Hypertension. 2006;48:637–43.

    Article  CAS  PubMed  Google Scholar 

  76. VongpatanasinW WZ, Arbique D, Arbique G, Adams-Huet B, Mitchell JH, Victor RG, Thomas GD. Functional sympatholysis is impaired in hypertensive humans. J Physiol. 2011;589:1209–20.

    Article  CAS  Google Scholar 

  77. Mortensen SP, Nyberg M, Gliemann L, Thaning P, Saltin B, Hellsten Y. Exercise training modulates functional sympatholysis and α-adrenergic vasoconstrictor responsiveness in hypertensive and normotensive individuals. J Physiol. 2014;592(14):3063–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Maury E, Brichard S. Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol. 2010;314(1):1e16.

    Article  CAS  Google Scholar 

  79. Baron AD, Brechtel G, Wallace P, Edelman SV. Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans. Am J Physiol. 1988;255:E769–74.

    CAS  PubMed  Google Scholar 

  80. Stuart CA, McCurry MP, Marino A, South MA, Howell MEA, Layne AS, et al. Slow-twitch fiber proportion in skeletal muscle correlates with insulin responsiveness. J Clin Endocrinol Metab. 2013;98(5):2027e36.

    Article  CAS  Google Scholar 

  81. Atkins KB, Johns D, Watts S, Clinton Webb R, Brosius FC 3rd. Decreased vascular glucose transporter expression and glucose uptake in DOCA-salt hypertension. J Hypertens. 2001;19(9):1581–7.

    Article  CAS  PubMed  Google Scholar 

  82. Natali N, Santoro D, Palombo C, Cerri M, Ghione S, Ferrannini. Impaired insulin action on skeletal muscle metabolism in essential hypertension. Hypertension. 1991;17:170–8.

    Article  CAS  PubMed  Google Scholar 

  83. De Ciuceis C, Flati V, Rossini C, Rufo A, Porteri E, Di Gregorio J, Petroboni B, La Boria E, Donini C, Pasini E, Rosei EA, Rizzoni D. Effect of antihypertensive treatments on insulin signalling in lympho-monocytes of essential hypertensive patients: a pilot study. Blood Press. 2014;23(6):330–8.

    Article  PubMed  CAS  Google Scholar 

  84. Duplain H, Burcelin R, Sartori C, Cook S, Egli M, Lepori M, et al. Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase. Circulation. 2001;104(3):342e5.

    Article  Google Scholar 

  85. Han TS, Al-Gindan YY, Govan L, Hankey CR, Lean MEJ. Associations of body fat and skeletal muscle with hypertension. J Clin Hypertens. 2018;21:230–8.

    Google Scholar 

  86. Ahmetov I, et al. Gene polymorphisms and fiber-type composition of human skeletal muscle. Int J Sport Nutr Exerc Metab. 2012;22(4):292–303.

    Article  CAS  PubMed  Google Scholar 

  87. Ben Bachir-Lamrini L, Sempore B, Mayet MH, Favier RJ. Evidence of a slow-to-fast fiber type transition in skeletal muscle from spontaneously hypertensive rats. Am J Physiol. 1990;258:R352–7.

    Article  CAS  PubMed  Google Scholar 

  88. Nagatomo F, Gu N, Fujino H, Takeda I, Tsuda K, Ishihara A. Skeletal muscle characteristics of rats with obesity, diabetes, hypertension, and hyperlipidemia. J Atheroscler Thromb. 2009;16:576–85.

    Article  CAS  PubMed  Google Scholar 

  89. Lash JM, Bohlen G. Functional adaptations of rat skeletal muscles arterioles to aerobic exercise training. J Appl Physiol. 1992;72:2052–62.

    Article  CAS  PubMed  Google Scholar 

  90. Green DJ, Cable NT, Fox C, Rankin JM, Taylor RR. Modification of forearm resistance vessels by exercise training in young men. J Appl Physiol. 1994;77:1829–33.

    Article  CAS  PubMed  Google Scholar 

  91. Jensen L, Pilegaard H, Neufer PD, Hellsten Y. Effect of acute exercise and exercise training on VEGF splice variants in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2004;287(2):R397–402.

    Article  CAS  PubMed  Google Scholar 

  92. Høier B, Nordsborg N, Andersen S, et al. Pro- and anti-angiogenic factors in human skeletal muscle in response to acute exercise and training. J Physiol. 2012;590(Pt 3):595–606.

    Article  PubMed  CAS  Google Scholar 

  93. Gustafsson T, Knutsson A, Puntschart A, et al. Increased expression of vascular endothelial growth factor in human skeletal muscle in response to short-term one-legged exercise training. Pflügers Arch Eur J Physiol. 2002;444(6):752–9.

    Article  CAS  Google Scholar 

  94. Gavin TP, Robinson CB, Yeager RC, England JA, Nifong LW, Hickner RC. Angiogenic growth factor response to acute systemic exercise in human skeletal muscle. J Appl Physiol. 2004;96:19–24.

    Article  CAS  PubMed  Google Scholar 

  95. Laughlin MH, Roseguini B. Mechanisms for exercise training-induced increases in skeletal muscle blood flow capacity: differences with interval sprint training versus aerobic endurance training. J Physiol Pharmacol. 2008;59(Suppl 7):71–88.

    PubMed  PubMed Central  Google Scholar 

  96. Gute D, Laughlin MH, Amann JF. Regional changes in capillary supply in skeletal muscle of interval sprint and low intensity, endurance trained rats. Microcirculation. 1994;1:183–93.

    Article  CAS  PubMed  Google Scholar 

  97. Mortensen SP, Egginton S, Madsen M, et al. Alpha adrenergic receptor blockade increases capillarization and fractional O2 extraction and lowers blood flow in contracting human skeletal muscle. Acta Physiol (Oxf). 2017;221(1):32–43.

    Article  CAS  Google Scholar 

  98. Woodman CR, Muller JM, Laughlin MH, Price EM. Induction of nitric oxide synthase mRNA in coronary resistance arteries isolated from exercise-trained pigs. Am J Physiol. 1997;273:H2575–9.

    CAS  PubMed  Google Scholar 

  99. Koller A, Huang A, Sun D, Kaley G. Exercise training augments flow-dependent dilation in rat skeletal muscle arterioles. Role of endothelial nitric oxide and prostaglandins. Circ Res. 1995;76:544–50.

    Article  CAS  PubMed  Google Scholar 

  100. Haga JH, Li Y-SJ, Chien S. Molecular basis of the effects of mechanical stretch on vascular smooth muscle cells. J Biomech. 2007;40:947–60.

    Article  PubMed  Google Scholar 

  101. Yan Z, Okutsu M, Akhtar YN, Lira VA. Regulation of exercise-induced fiber type transformation, mitochondrial biogenesis, and angiogenesis in skeletal muscle. J Appl Physiol (1985). 2011;110:264–74.

    Article  CAS  Google Scholar 

  102. Higashi Y, Yoshizumi M. Exercise and endothelial function: role of endothelium-derived nitric oxide and oxidative stress in healthy subjects and hypertensive patients. Pharmacol Ther. 2004;102:87–96.

    Article  CAS  PubMed  Google Scholar 

  103. Kuru O, Sentürk UK, Koçer G, Ozdem S, Başkurt OK, Cetin A, Yeşilkaya A, Gündüz F. Effect of exercise training on resistance arteries in rats with chronic NOS inhibition. J Appl Physiol. 2009;107:896–902.

    Article  CAS  PubMed  Google Scholar 

  104. Higashi Y, Sasaki S, Kurisu S, Yoshimizu A, Sasaki N, Matsuura H, Kajiyama G, Oshima T. Regular aerobic exercise augments endothelium-dependent vascular relaxation in normotensive as well as hypertensive subjects: role of endothelium-derived nitric oxide. Circulation. 1999a;100(11):1194–202.

    Article  CAS  PubMed  Google Scholar 

  105. Higashi Y, Sasaki S, Sasaki N, Nakagawa K, Ueda T, Yoshimizu A, Kurisu S, Matsuura H, Kajiyama G, Oshima T. Daily aerobic exercise improves reactive hyperemia in patients with essential hypertension. Hypertension. 1999b;33(1 Pt 2):591–7.

    Article  CAS  PubMed  Google Scholar 

  106. Beck DT, Martin JS, Casey DP, Braith RW. Exercise training improves endothelial function in resistance arteries of young prehypertensives. J Hum Hypertens. 2014;28:303–9.

    Article  CAS  PubMed  Google Scholar 

  107. Hagberg JM, Park JJ, Brown MD. The role of exercise training in the treatment of hyperten-Sion: an update. Sports Med. 2000;30:193–206.

    Article  CAS  PubMed  Google Scholar 

  108. Melo RP, Martinho E, Michelini LC. Training-induced, pressure lowering effect in SHR wide effects on circulatory profile of exercised and nonexercised muscles. Hypertension. 2003;42:851–7.

    Article  CAS  PubMed  Google Scholar 

  109. Bátkai S, Thum T. MicroRNAs in hypertension: mechanisms and therapeutic targets. Curr Hypertens Rep. 2012;14:79–87.

    Article  PubMed  CAS  Google Scholar 

  110. Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N. Combinatorial microRNA target predictions. Nat Genet. 2005;37:495–500.

    Article  CAS  PubMed  Google Scholar 

  111. Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T, Hammond SM. Ex-tensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev. 2006;20:2202–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 2005;436:214–20.

    Article  CAS  PubMed  Google Scholar 

  113. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, et al. The role of mi-croRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006;38:228–33.

    Article  CAS  PubMed  Google Scholar 

  114. Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S, et al. Mi-croRNAs regulate brain morphogenesis in zebrafish. Science. 2005;308:833–8.

    Article  CAS  PubMed  Google Scholar 

  115. Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004;303:83–6.

    Article  CAS  PubMed  Google Scholar 

  116. Hazebroek M, Stöger L, Wijnands E, Janssen BJ, Creemers EE, Pinto YM, Grimm D, Schürmann N, Vigorito E, Thum T, Stassen F, Yin X, Mayr M, de Windt LJ, Lutgens E, Wouters K, de Winther MP, Zacchigna S, Giacca M, van Bilsen M, Papageorgiou AP, Schroen B. Macrophage microRNA-155 promotes cardiac hypertrophy and failure. Circulation. 2013;128:1420–32.

    Article  PubMed  CAS  Google Scholar 

  117. Soci UP, Fernandes T, Rosa KT, Irigoyen MC, Phillips MI, Oliveira EM. The role of mi-croRNA-208a in cardiac hypertrophy induced by aerobic physical training. FASEB J. 2013;27:975. Abstract.

    Article  Google Scholar 

  118. Fernandes T, Soci UP, Oliveira EM. MiRNA-208a targeting Purβ gene regulates the β-MHC content in cardiac hypertrophy induced by exercise training. Circ Res. 2013;128:A21942.

    Google Scholar 

  119. Yannoutsos A, Levy BI, Safar ME, Slama G, Blacher J. Pathophysiology of hypertension: interactions between macro and microvascular alterations through endothelial dysfunction. J Hypertens. 2014;32:216–24.

    Article  CAS  PubMed  Google Scholar 

  120. Hartmann D, Thum T. MicroRNAs and vascular (dys)function. Vascul Pharmacol. 2011;55:92–105.

    Article  CAS  PubMed  Google Scholar 

  121. Wei Y, Schober A, Weber C. Pathogenic arterial remodeling: the good and bad of mi-croRNAs. Am J Physiol Heart Circ Physiol. 2013;304:H1050–9.

    Article  CAS  PubMed  Google Scholar 

  122. Wu XD, Zeng K, Liu WL, Gao YG, Gong CS, Zhang CX, Chen YQ. Effect of aerobic exercise on miRNA-TLR4 signaling in atherosclerosis. Int J Sports Med. 2014;35:344–50.

    PubMed  Google Scholar 

  123. Sun HX, Zeng DY, Li RT, Pang RP, Yang H, Hu YL, Zhang Q, Jiang Y, Huang LY, Tang YB, Yan GJ, Zhou JG. Essential role of microRNA-155 in regulating endothelium-dependent vasorelaxation by targeting endothelial nitric oxide synthase. Hypertension. 2012;60:1407–14.

    Article  CAS  PubMed  Google Scholar 

  124. Shi L, Fleming I. One miR level of control: microRNA-155 directly regulates endothelial ni-tric oxide synthase mRNA and protein levels. Hypertension. 2012;60:1381–2.

    Article  CAS  PubMed  Google Scholar 

  125. Ba’tkai S, Thum T. MicroRNAs in hypertension: mechanisms and therapeutics targets. Curr Hypertens Rep. Epub ahead of print November 4, 2011.

    Google Scholar 

  126. Sua’rez Y, Sessa WC. MicroRNAs as novel regulators of angiogenesis. Circ Res. 2009;104:442–54.

    Article  CAS  Google Scholar 

  127. Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R, Olson EN. The endothelial-specific microRNAmiR-126 governs vascular integrity and angiogenesis. Dev Cell. 2008;15:261–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci U S A. 2008;105:1516–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Urbich C, Kuehbacher A, Dimmeler S. Role of microRNAs in vascular diseases, inflamma-tion, and angiogenesis. Cardiovasc Res. 2008;79:581–8.

    Article  CAS  PubMed  Google Scholar 

  130. Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, Bruneau BG, Stainier DYR, Srivastava D. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell. 2008;15:272–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Fernandes T, Magalhães FC, Roque FR, Phillips MI, Oliveira EM. Exercise training prevents the microvascular rarefaction in hypertension balancing angiogenic and apoptotic factors: role of microRNAs-16, −21, and −126. Hypertension. 2012;59:513–20.

    Article  CAS  PubMed  Google Scholar 

  132. Dejean E, Renalier MH, Foisseau M, Agirre X, Joseph N, de Paiva GR, Al Saati T, Soulier J, Desjobert C, Lamant L, Prosper F, Felsher DW, Cavaille J, Prats H, Delsol G, Giuriato S, Meggetto F. Hypoxia microRNA-16 downregulation induces VEGF expression in anaplastic lymphoma kinase (ALK)-positive anaplastic large-cell lymphomas. Leukemia. 2011;25:1882–90.

    Article  CAS  PubMed  Google Scholar 

  133. Chamorro-Jorganes A, Araldi E, Penalva LO, Sandhu D, Fernández-Hernando C, Suárez Y. MicroRNA-16 and MicroRNA-424 regulate cell-autonomous angiogenic functions in endothelial cells via targeting vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1. Arterioscler Thromb Vasc Biol. 2011;31:2595–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Weber M, Baker MB, Moore JP, Searles CD. MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity. Biochem Biophys Res Commun. 2010;393:643–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Nicole S, Standley C, Walker P, Hurlstone A, Fogarty KE, Lawson ND. microRNA-mediated integration of haemodynamics and VEGF signaling during angiogenesis. Nature. 2010;464:1196–200.

    Article  CAS  Google Scholar 

  136. Qin B, Yang H, Xiao B. Role of microRNAs in endothelial inflammation and senescence. Mol Biol Rep. 2012;39:4509–18.

    Article  CAS  PubMed  Google Scholar 

  137. Ota H, Eto M, Ogawa S, Iijima K, Akishita M, Ouchi Y. SIRT1/eNOS axis as a potential target against vascular senescence, dysfunction and atherosclerosis. J Atheroscler Thromb. 2010;17:431–5.

    Article  CAS  PubMed  Google Scholar 

  138. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006;38:228–33.

    Article  CAS  PubMed  Google Scholar 

  139. Motohashi N, Alexander MS, Shimizu-Motohashi Y, Myers JA, Kawahara G, Kunkel LM. Regulation of IRS1/Akt insulin signaling by microRNA-128a during myogenesis. J Cell Sci. 2013;126:2678–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Rao PK, Kumar RM, Farkhondeh M, Baskerville S, Lodish HF. Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci U S A. 2006;103:8721–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Safdar A, Abadi A, Akhtar M, Hettinga BP, Tarnopolsky MA. miRNA in the regulation of skeletal muscle adaptation to acute endurance exercise in C57Bl/6J male mice. PLoS One. 2009;4:e5610.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson JA, Kelm RJ, Olson EN. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell. 2009;17:662–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 2007;316:575–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damiano Rizzoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rizzoni, D., Agabiti-Rosei, C., de Ciuceis, C. (2022). Exercise and Microcirculation in Hypertension. In: Palatini, P., Agabiti-Rosei, E., Mancia, G. (eds) Exercise, Sports and Hypertension. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-031-07958-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07958-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07957-3

  • Online ISBN: 978-3-031-07958-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics