Skip to main content

Effects of Physical Activity on Hypertension of Youth

  • Chapter
  • First Online:
Exercise, Sports and Hypertension

Part of the book series: Updates in Hypertension and Cardiovascular Protection ((UHCP))

  • 589 Accesses

Abstract

Sedentary habits leading to obesity and metabolic disturbances are responsible for the rise in the prevalence of hypertension among adolescents and young individuals. Regular aerobic exercise has been shown to reduce blood pressure (BP) in resting conditions and BP reactivity to stressors, and to improve all components of the metabolic syndrome. Beneficial effects of physical activity have been observed also on hypertension-mediated organ damage. Some studies have documented a paradoxical effect of exercise on the hypertensive heart with a reduction rather than an increase of left ventricular mass. Results of the HARVEST study have shown that even high-intensity exercise has beneficial effects on the structure of the left ventricle in young hypertensive athletes. In addition, regular physical activity has been found to retard the progression of subclinical atherosclerosis and to improve arterial distensibility. Although the pathogenesis and the prognostic significance of isolated systolic hypertension in youth are still controversial, in physically active young people systolic hypertension is often considered an innocent clinical condition caused by elevated stroke volume and increased pulse pressure amplification due to low wave arterial reflection from peripheral sites. An exaggerated BP response during exercise testing can be found in normotensive subjects and is thought to be due to a failure to reduce total peripheral resistance adequately during exercise. Several prospective studies have demonstrated that excessive increases in BP during exercise may be a marker of future sustained hypertension and of increased risk of cardiovascular mortality. Studies performed in young borderline hypertensive subjects have demonstrated that BP level during steady-state long-lasting exercise are unrelated to the maximum BP attained during traditional stress testing. During a type of exercise simulating a true sport activity a smaller BP increase occurs in hypertensive than in normotensive subjects at peak exercise and the BP level reached at peak exercise is not proportional to baseline pretest BP. A large body of evidence supports a strategy of exercise training in the management of young sedentary patients in the early stages of hypertension. However, caution should be used in subjects with more severe hypertension and every hypertensive athlete should be thoroughly investigated to exclude target organ damage and coronary artery disease. Pharmacological treatment should be used to normalize office and out-of-office BP, and competitions should be postponed until BP measurements return within the normal range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fields LE, Burt VL, Cutler JA, Hughes J, Roccella EJ, Sorlie P. The burden of adult hypertension in the United States 1999 to 2000: a rising tide. Hypertension. 2004;44:398–404.

    Article  CAS  PubMed  Google Scholar 

  2. Cornelissen VA, Fagard RH. Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors. Hypertension. 2005;46:667–75.

    Article  CAS  PubMed  Google Scholar 

  3. Hamer M. Sports and psychological processes. Implications for the primary prevention of coronary heart disease. Sports Med. 2006;36:829–38.

    Article  PubMed  Google Scholar 

  4. Fagard RH. Exercise therapy in hypertensive cardiovascular disease. Prog Cardiovasc Dis. 2011;53:404–11.

    Article  PubMed  Google Scholar 

  5. Julius S. The hemodynamic link between insulin resistance and hypertension. J Hypertens. 1991;9:983–6.

    Article  CAS  PubMed  Google Scholar 

  6. Kjeldsen SE, Zweifler AJ, Petrin J, Weder AB, Julius S. Sympathetic nervous system involvement in essential hypertension: increased platelet noradrenaline coincides with decreased ß-adrenoreceptor responsiveness. Blood Press. 1994;3:164–71.

    Article  CAS  PubMed  Google Scholar 

  7. Mancia G, Grassi G, Giannattasio C, Seravalle G. Sympathetic activation in the pathogenesis of hypertension and progression of organ damage. Hypertension. 1999;34:724–8.

    Article  CAS  PubMed  Google Scholar 

  8. Maver J, Strucl M, Accetto R. Autonomic nervous system activity in normotensive subjects with a family history of hypertension. Clin Auton Res. 2004;14:358–9.

    Article  Google Scholar 

  9. Palatini P, Majahalme S, Amerena J, Nesbitt S, Vriz O, Michieletto M, et al. Determinants of left ventricular structure and mass in young subjects with sympathetic over-activity. The Tecumseh Offspring Study. J Hypertens. 2000;18:769–75.

    Article  CAS  PubMed  Google Scholar 

  10. Palatini P, Julius S. The role of cardiac autonomic function in hypertension and cardiovascular disease. Curr Ther Rep. 2009;11:199–205.

    Google Scholar 

  11. Salmon P. Effects of physical exercise on anxiety, depression, and sensitivity to stress: a unifying theory. Clin Psychol Rev. 2001;21:33–61.

    Article  CAS  PubMed  Google Scholar 

  12. Hull EM, Young SH, Ziegler MG. Aerobic fitness affects cardiovascular and catecholamine responses to stressors. Psychophysiology. 1984;21:353–60.

    Article  CAS  PubMed  Google Scholar 

  13. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the task force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34:2159–219.

    Article  PubMed  Google Scholar 

  14. Palatini P, Rosei EA, Avolio A, Bilo G, Casiglia E, Ghiadoni L, et al. Isolated systolic hypertension in the young: a position paper endorsed by the European Society of Hypertension. J Hypertens. 2018;36:1222–36.

    Article  CAS  PubMed  Google Scholar 

  15. Grebla RG, Rodriguez CJ, Borrell LN, Pickering TG. Prevalence and determinants of isolated systolic hypertension among young adults: the 1999-2004 US National Health and nutrition examination survey. J Hypertens. 2010;28:15–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Julius S, Jamerson K, Mejia A, Krause L, Schork N, Jones K. The association of borderline hypertension with target organ damage and higher coronary risk. JAMA. 1990;264:354–8.

    Article  CAS  PubMed  Google Scholar 

  17. Julius S, Krause L, Schork NJ, Mejia A, Jones KA, Van den Ven C, et al. Hyperkinetic borderline hypertension in Tecumseh, Michigan. J Hypertension. 1991;9:77–84.

    Article  CAS  Google Scholar 

  18. Palatini P, Longo D, Zaetta V, Perkovic D, Garbelotto R, Pessina AC. Evolution of blood pressure and cholesterol in stage 1 hypertension: role of autonomic nervous system activity. J Hypertens. 2006;24:1375–81.

    Article  CAS  PubMed  Google Scholar 

  19. Fagard RH, Stolarz K, Kuznetsova T, Kawecka-Jaszcz K. Sympathetic activity, assessed by power spectral analysis of HR variability, in white-coat, masked and sustained hypertension versus true normotension. J Hypertens. 2007;25:2280–5.

    Article  CAS  PubMed  Google Scholar 

  20. Mancia G, Grassi G. The autonomic nervous system and hypertension. Circ Res. 2014;114:1804–14.

    Article  CAS  PubMed  Google Scholar 

  21. Grassi G, Mark AL, Esler M. The sympathetic nervous system alterations in human hypertension. Circ Res. 2015;116:976–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Matthews KA, Katholi CR, McCreath H, Whooley MA, Williams DR, Zhu S, et al. Blood pressure reactivity to psychological stress predicts hypertension in the CARDIA study. Circulation. 2004;110:74–8.

    Article  PubMed  Google Scholar 

  23. Steptoe A. Psychophysiological stress reactivity and hypertension. Hypertension. 2008;52:220–1.

    Article  CAS  PubMed  Google Scholar 

  24. Palatini P, Palomba D, Bertolo O, Minghetti R, Longo L, Sarlo M, et al. The white-coat effect is unrelated to the difference between clinic and daytime blood pressure and is associated with greater reactivity to public speaking. J Hypertens. 2003;21:545–53.

    Article  CAS  PubMed  Google Scholar 

  25. Palatini P, Bratti P, Palomba D, Bonso E, Saladini F, Benetti E, et al. BP reactivity to public speaking in stage 1 hypertension: influence of different task scenarios. Blood Press. 2011;20:290–5.

    Article  PubMed  Google Scholar 

  26. Palatini P. Role of elevated heart rate in the development of cardiovascular disease in hypertension. Hypertension. 2011;58:745–50.

    Article  CAS  PubMed  Google Scholar 

  27. Rimmele U, Zellweger BC, Marti B, Seiler R, Mohiyeddini C, Ehlert U, et al. Trained men show lower cortisol, heart rate and psychological responses to psychosocial stress compared with untrained men. Psychoneuroendocrinology. 2007;32:627–35.

    Article  CAS  PubMed  Google Scholar 

  28. Palatini P, Bratti P, Palomba D, Saladini F, Zanatta N, Maraglino G. Regular physical activity attenuates the BP response to public speaking and delays the development of hypertension. J Hypertens. 2010;28:1186–93.

    Article  CAS  PubMed  Google Scholar 

  29. Ewart CK, Kolodner KB. Predicting ambulatory blood pressure during school: effectiveness of social and nonsocial reactivity tasks in black and white adolescents. Psychophysiology. 1993;30:30–8.

    Article  CAS  PubMed  Google Scholar 

  30. O’Sullivan SE, Bell C. The effects of exercise and training on human cardiovascular reflex control. J Autonom Nerv Syst. 2000;81:16–24.

    Article  Google Scholar 

  31. Laterza MC, de Matos LD, Trombetta IC, Braga AM, Roveda F, Alves MJ, et al. Exercise training restores baroreflex sensitivity in never-treated hypertensive patients. Hypertension. 2007;49:1298–306.

    Article  CAS  PubMed  Google Scholar 

  32. O’Rourke MF, Vlachopoulos C, Graham RM. Spurious systolic hypertension in youth. Vasc Med. 2000;5:141–5.

    Article  PubMed  Google Scholar 

  33. Mahmud A, Feely J. Spurious systolic hypertension of youth: fit young men with elastic arteries. Am J Hypertens. 2003;16:229–32.

    Article  PubMed  Google Scholar 

  34. Hulsen HT, Nijdam ME, Bos WJ, Uiterwaal CS, Oren A, Grobbee DE, et al. Spurious systolic hypertension in young adults; prevalence of high brachial systolic blood pressure and low central pressure and its determinants. J Hypertens. 2006;24:1027–32.

    Article  CAS  PubMed  Google Scholar 

  35. Roman MJ, Okin PM, Kizer JR, Lee ET, Howard BV, Devereux RB. Relation of central and brachial blood pressure to left ventricular hypertrophy and geometry: the strong heart study. J Hypertens. 2010;28:384–8.

    Article  CAS  PubMed  Google Scholar 

  36. Pelliccia A. Athlete’s heart and hypertrophic cardiomyopathy. Curr Cardiol Rep. 2000;2:166–71.

    Article  CAS  PubMed  Google Scholar 

  37. Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA, American College of Sports Medicine Position Stand. Exercise and hypertension. Med Sci Sports Exerc. 2004;35:533–53.

    Article  Google Scholar 

  38. Saladini F, Santonastaso M, Mos L, Benetti E, Zanatta N, Maraglino G, et al. Isolated systolic hypertension of young to middle-age individuals implies a relatively low risk of developing hypertension needing treatment when central blood pressure is low. J Hypertens. 2011;29:1311–9.

    Article  CAS  PubMed  Google Scholar 

  39. Saladini F, Fania C, Mos L, Mazzer A, Casiglia E, Palatini P. Office pulse pressure is a predictor of favourable outcome in young-to-middle-aged subjects with stage 1 hypertension. Hypertension. 2017;70:537–42.

    Article  CAS  Google Scholar 

  40. McEniery CM, Franklin SS, Wilkinson IB, Cockcroft JR. Isolated systolic hypertension in the young: a need for clarity. J Hypertens. 2013;31:1911–3.

    Article  CAS  PubMed  Google Scholar 

  41. McEniery CM, Yasmin, Wallace S, Maki-Petaja K, McDonnell B, Sharman JE, et al. ENIGMA study investigators. Increased stroke volume and aortic stiffness contribute to isolated systolic hypertension in young adults. Hypertension. 2005;46:221–6.

    Article  CAS  PubMed  Google Scholar 

  42. Palatini P, Saladini F, Mos L, Fania C, Mazzer A, Casiglia E. Clinical characteristics and risk of hypertension needing treatment in young patients with systolic hypertension identified with ambulatory monitoring. J Hypertens. 2018;36:1810–5.

    Article  CAS  PubMed  Google Scholar 

  43. Palatini P, Graniero G, Mormino P, Nicolosi L, Mos L, Visentin P, et al. Relation between physical training and ambulatory blood pressure in stage I hypertensive subjects. Results of the HARVEST trial. Circulation. 1994;90:2870–6.

    Article  CAS  PubMed  Google Scholar 

  44. Reaven PD, Barrett-Connor E, Edelstein S. Relation between leisure-time physical activity and blood pressure in older women. Circulation. 1991;83:559–65.

    Article  CAS  PubMed  Google Scholar 

  45. Meisinger C, Koenig W, Baumert J, Doring A. Uric acid levels are associated with all cause and cardiovascular disease mortality independent of systemic inflammation in men from the general population: the MONICA/KORA cohort study. Arterioscler Thromb Vasc Biol. 2008;28:1186–92.

    Article  CAS  PubMed  Google Scholar 

  46. Fang J, Alderman MH. Serum uric acid and cardiovascular mortality the NHANES I epidemiologic follow-up study, 1971-1992. National Health and Nutrition Examination Survey. JAMA. 2000;283:2404–10.

    Article  CAS  PubMed  Google Scholar 

  47. Palatini P, Parati G, Virdis A, Reboldi G, Masi S, Mengozzi A, et al. High heart rate amplifies the risk of cardiovascular mortality associated with elevated uric acid. Eur J Prev Cardiol. 2021.

    Google Scholar 

  48. Saladini F, Mos L, Fania C, Garavelli G, Casiglia E, Palatini P. Regular physical activity prevents development of hypertension in young people with hyperuricemia. J Hypertens. 2017;35(5):994–1001.

    Article  CAS  PubMed  Google Scholar 

  49. Palatini P, Canali C, Graniero GR, Rossi G, de Toni R, Santonastaso M. Relationship of plasma renin activity with caffeine intake and physical training in mild hypertensive men. HARVEST Study Group. Eur J Epidemiol. 1996;12:485–91.

    Article  CAS  PubMed  Google Scholar 

  50. Casale PN, Devereux RB, Milner M, Zullo G, Harshfield GA, Pickering TG, et al. Value of echocardiographic measurement of left ventricular mass in predicting cardiovascular morbid events in hypertensive men. Ann Intern Med. 1986;105:173–8.

    Article  CAS  PubMed  Google Scholar 

  51. Baglivo HP, Fabregues G, Burrieza H, Esper RC, Talarico M, Esper RJ. Effect of moderate physical training on left ventricular mass in mild hypertensive persons. Hypertension. 1990;15(suppl 1):I-153–6.

    CAS  Google Scholar 

  52. Kokkinos PF, Narayan P, Colleran JA, Pittares A, Notargiacomo A, Reda D. Effects of regular exercise on blood pressure and left ventricular hypertrophy in African-American men with severe hypertension. N Engl J Med. 1995;333:1462–7.

    Article  CAS  PubMed  Google Scholar 

  53. Zanettini R, Bettega D, Agostoni O, Ballestra B, del Rosso G, di Michele R, et al. Exercise training in mild hypertension: effects on blood pressure, left ventricular mass and coagulation factor VII and fibrinogen. Cardiology. 1997;88:468–73.

    Article  CAS  PubMed  Google Scholar 

  54. Hinderliter A, Sherwood A, Gullette EC, Babyak M, Waugh R, Georgiades A, et al. Reduction of left ventricular hypertrophy after exercise and weight loss in overweight patients with mild hypertension. Arch Intern Med. 2002;162:1333–9.

    Article  PubMed  Google Scholar 

  55. Reid CM, Dart AM, Dewar EM, Jennings GL. Interactions between the effects of exercise and weight loss on risk factors, cardiovascular haemodynamics and left ventricular structure in overweight subjects. J Hypertens. 1994;12:291–301.

    CAS  PubMed  Google Scholar 

  56. Palatini P, Visentin P, Dorigatti F, Guarnieri C, Santonastaso M, Cozzio S, et al. Regular physical activity prevents development of left ventricular hypertrophy in hypertension. Eur Heart J. 2009;30:225–32.

    Article  PubMed  Google Scholar 

  57. Lee J, Cho HS, Park S, Kim WK. Regular exercise produced cardioprotective effects on rat's heart with hypertension induced by L-NAME administration. Clin Exp Hypertens. 2009;31:364–75.

    Article  CAS  PubMed  Google Scholar 

  58. Niebauer J, Börjesson M, Carre F, Caselli S, Palatini P, Quattrini F, et al. Recommendations for participation in competitive sports of athletes with arterial hypertension: a position statement from the sports cardiology section of the European Association of Preventive Cardiology (EAPC). Eur Heart J. 2018;39:3664–71.

    Article  PubMed  Google Scholar 

  59. O’Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson SK Jr. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults: cardiovascular health study collaborative research group. N Engl J Med. 1999;340:14–22.

    Article  PubMed  Google Scholar 

  60. Pauletto P, Palatini P, Da Ros S, Pagliara V, Santipolo N, Baccillieri S, et al. Factors underlying the increase in carotid intima-media thickness in borderline hypertensives. Arterioscler Thromb Vasc Biol. 1999;19:1231–7.

    Article  CAS  PubMed  Google Scholar 

  61. Puato M, Palatini P, Zanardo M, Dorigatti F, Tirrito C, Rattazzi M, et al. Increase in carotid intima-media thickness in grade I hypertensive subjects: white-coat versus sustained hypertension. Hypertension. 2008;51:1300–5.

    Article  CAS  PubMed  Google Scholar 

  62. Rauramaa R, Halonen P, Vaisanen SB, Lakka TA, Schmidt-Trucksäss A, Berg A, et al. Effects of aerobic physical exercise on inflammation and atherosclerosis in men: the DNASCO study: a six-year randomized, controlled trial. Ann Intern Med. 2004;140:1007–14.

    Article  PubMed  Google Scholar 

  63. Okada K, Maeda N, Tatsukawa M, Shimizu C, Sawayama Y, Hayashi J. The influence of lifestyle modification on carotid artery intima-media thickness in a suburban Japanese population. Atherosclerosis. 2004;173:329–37.

    Article  CAS  PubMed  Google Scholar 

  64. Lakka TA, Laukkanen JA, Rauramaa R, Salonen R, Lakka HM, Kaplan GA, et al. Cardiorespiratory fitness and the progression of carotid atherosclerosis in middle-aged men. Ann Intern Med. 2001;134:12–20.

    Article  CAS  PubMed  Google Scholar 

  65. Nordstrom CK, Dwyer KM, Merz CN, Shircore A, Dwyer JH. Leisure time physical activity and early atherosclerosis: the Los Angeles atherosclerosis study. Am J Med. 2003;115:19–25.

    Article  PubMed  Google Scholar 

  66. Palatini P, Puato M, Rattazzi M, Pauletto P. Effect of regular physical activity on carotid intima-media thickness. Results from a 6-year prospective study in the early stage of hypertension. Blood Press. 2011;20:37–44.

    Article  PubMed  Google Scholar 

  67. Meyer AA, Kundt G, Lenschow U, Schuff-Werner P, Kienast W. Improvement of early vascular changes and cardiovascular risk factors in obese children after a six-month exercise program. J Am Coll Cardiol. 2006;48:1865–70.

    Article  PubMed  Google Scholar 

  68. Polak JF, Person SD, Wei GS, Godreau A, Jacobs DR Jr, Harrington A, et al. Segment-specific associations of carotid intima-media thickness with cardiovascular risk factors: the coronary artery risk development in Young adults (CARDIA) study. Stroke. 2010;41:9–15.

    Article  PubMed  Google Scholar 

  69. Hayashi K, Sugawara J, Komine H, Maeda S, Yokoi T. Effects of aerobic exercise training on the stiffness of central and peripheral arteries in middle-aged sedentary men. Jpn J Physiol. 2005;55:235–9.

    Article  PubMed  Google Scholar 

  70. Otsuki T, Maeda S, Iemitsu M, Saito Y, Tanimura Y, Ajisaka R, et al. Vascular endothelium-derived factors and arterial stiffness in strength- and endurance-trained men. Am J Physiol Heart Circ Physiol. 2007;292:H786–91.

    Article  CAS  PubMed  Google Scholar 

  71. Saladini F, Benetti E, Mos L, Mazzer A, Casiglia E, Palatini P. Regular physical activity is associated with improved small artery distensibility in young to middle-age stage 1 hypertensives. Vasc Med. 2014;19:458–64.

    Article  PubMed  Google Scholar 

  72. Palatini P. Exaggerated blood pressure response to exercise: pathophysiologic mechanisms and clinical relevance. J Sports Med Phys Fitness. 1998;38(1):1–9.

    CAS  PubMed  Google Scholar 

  73. Manolio TA, Burke GL, Savage PJ, Sidney S, Gardin JM, Oberman A. Exercise blood pressure response and 5 year risk of elevated blood pressure in a cohort of young adults: the CARDIA study. Am J Hypertens. 1994;7:234–41.

    Article  CAS  PubMed  Google Scholar 

  74. Matthews CE, Pate RR, Jackson KL, Ward DS, Macera CA, Kohl HW, et al. Exaggerated blood pressure response to dynamic exercise and risk of future hypertension. J Cin Epidemiol. 1998;51:29–35.

    Article  CAS  Google Scholar 

  75. Allison TG, Cordeiro MA, Miller TD, Daida H, Squires RW, Gau GT. Prognostic significance of exercise-induced systemic hypertension in healthy subjects. Am J Cardiol. 1999;83:371–5.

    Article  CAS  PubMed  Google Scholar 

  76. Singh JP, Larson MG, Manolio TA, O’Donnell CJ, Lauer M, Evans JC, et al. Blood pressure response during treadmill testing as a risk factor for new onset hypertension: the Framingham heart study. Circulation. 1999;99:1831–6.

    Article  CAS  PubMed  Google Scholar 

  77. Miyai N, Arita M, Miyashita K, Morioka I, Shiraishi T, Nishio I. Blood pressure response to heart rate during exercise test and risk of future hypertension. Hypertension. 2002;39:761–6.

    Article  CAS  PubMed  Google Scholar 

  78. Schultz MG, Otahal P, Cleland VJ, Blizzard L, Marwick TH, Sharman JE. Exercise-induced hypertension, cardiovascular events, and mortality in patients undergoing exercise stress testing: a systematic review and meta-analysis. Am J Hypertens. 2013;26:357–66.

    Article  CAS  PubMed  Google Scholar 

  79. Schultz MG, Gdipappstat PO, Picone DS, Hons B, Sharman JE. Clinical relevance of exaggerated exercise blood pressure. J Am Coll Cardiol. 2015;66:1843–5.

    Article  PubMed  Google Scholar 

  80. Yzaguirre I, Grazioli G, Domenech M, Vinuesa A, Pi R, Gutierrez J, et al. Exaggerated blood pressure response to exercise and late-onset hypertension in young adults. Blood Press Monit. 2017;22(6):339–44.

    Article  PubMed  Google Scholar 

  81. Lauer MS, Pashkow FJ, Harvey SA, Marwick TH, Thomas JD. Angiographic and prognostic implications of an exaggerated exercise systolic blood pressure response and rest systolic blood pressure in adults undergoing evaluation for suspected coronary artery disease. J Am Coll Cardiol. 1995;26:1630–6.

    Article  CAS  PubMed  Google Scholar 

  82. Lewis GD, Gona P, Larson MG, Plehn JF, Benjamin EJ, O’Donnell CJ, et al. Exercise blood pressure and the risk of incident cardiovascular disease (from the Framingham heart study). Am J Cardiol. 2008;101:1614–20.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Palatini P, Mos L, Mormino P, Munari L, Del Torre M, Valle F, et al. Intra-arterial blood pressure monitoring in the evaluation of the hypertensive athlete. Eur Heart J. 1990;11:348–54.

    Article  CAS  PubMed  Google Scholar 

  84. Hurst RT, Burke RF, Wissner E, Roberts A, Kendall CB, Lester SJ, et al. Incidence of subclinical atherosclerosis as a marker of cardiovascular risk in retired professional football players. Am J Cardiol. 2010;105:1107–11.

    Article  PubMed  Google Scholar 

  85. Raghuveer G, Hartz J, Lubans DR, Takken T, Wiltz JL, Mietus-Snyder M, et al. Cardiorespiratory fitness in youth: an important marker of health: a scientific statement from the American Heart Association. Circulation. 2020;142(7):e101–18.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Campbell RM, Douglas PS, Eidem BW, Lai WW, Lopez L, Sachdeva R. ACC/AAP/AHA/ASE/HRS/SCAI/SCCT/SCMR/SOPE 2014 appropriate use criteria for initial transthoracic echocardiography in outpatient pediatric cardiology: a report of the American College of Cardiology Appropriate use Criteria Task Force, American Academy of Pediatrics, American Heart Association, American Society of Echocardiography, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Pediatric Echocardiography. J Am Coll Cardiol. 2014;64(19):2039–60.

    Article  PubMed  Google Scholar 

  87. Caselli S, Vaquer Segui A, Quattrini F, Di Gacinto B, Milan A, Assorgi R, et al. Upper normal values of blood pressure response to exercise in Olympic athletes. Am Heart J. 2016;177:120–8.

    Article  PubMed  Google Scholar 

  88. Delise P, Mos L, Sciarra L, Basso C, Biffi A, Cecchi F, et al. Italian Cardiological guidelines (COCIS) for competitive sport eligibility in athletes with heart disease: update 2020. J Cardiovasc Med. 2021;22(11):874–91.

    Google Scholar 

Download references

Acknowledgments

None.

Funding

None.

Author Contributions

P.P. performed the design of the study, data collection and analysis, manuscript writing and revision.

Conflict of Interest

None.

Statement

All human studies whose data have been used for the present chapter have been reviewed by the appropriate ethics committees and have been performed in accordance with the ethical standards of the 1964 Declaration of Helsinki.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Palatini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Palatini, P. (2022). Effects of Physical Activity on Hypertension of Youth. In: Palatini, P., Agabiti-Rosei, E., Mancia, G. (eds) Exercise, Sports and Hypertension. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-031-07958-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07958-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07957-3

  • Online ISBN: 978-3-031-07958-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics