Skip to main content

Orexins

  • Chapter
  • First Online:
Neurochemistry in Clinical Practice

Abstract

Orexin or hypocretin is a peptide neurotransmitter that is mainly expressed by lateral hypothalamic area (LHA) neurons. Orexins are crucial in the coordination of sleep and wakefulness states. Orexin deficiency causes narcolepsy, which is characterized by excessive daytime sleepiness, cataplexy, hypnogogic hallucinations, and sleep paralysis. The actions of orexins are mediated by two G-protein-coupled receptors termed orexin-1 receptor (OX1R) and orexin-2 receptor (OX2R). Both agonists and antagonists of orexins are being studied as potential therapeutic agents. Suvorexant (MK-4305) is a small molecule diazepane-based orexin receptor antagonist which is used in the treatment of insomnia. Orexinergic neuronal system is also protective against ischemia–reperfusion injury of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Inutsuka A, Yamanaka A. The physiological role of orexin/hypocretin neurons in the regulation of sleep/wakefulness and neuroendocrine functions. Front Endocrinol. 2013;4:18.

    Article  Google Scholar 

  2. De Lecea L, Kilduff T, Peyron C, Gao X-B, Foye P, Danielson P, et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A. 1998;95(1):322–7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998;92(4):573–85.

    Article  CAS  PubMed  Google Scholar 

  4. Peyron C, Tighe DK, Van Den Pol AN, De Lecea L, Heller HC, Sutcliffe JG, et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci. 1998;18(23):9996–10015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nambu T, Sakurai T, Mizukami K, Hosoya Y, Yanagisawa M, Goto K. Distribution of orexin neurons in the adult rat brain. Brain Res. 1999;827(1–2):243–60.

    Article  CAS  PubMed  Google Scholar 

  6. Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin X, et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell. 1999;98(3):365–76.

    Article  CAS  PubMed  Google Scholar 

  7. Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999;98(4):437–51.

    Article  CAS  PubMed  Google Scholar 

  8. Peyron C, Faraco J, Rogers W, Ripley B, Overeem S, Charnay Y, et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med. 2000;6(9):991–7.

    Article  CAS  PubMed  Google Scholar 

  9. Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S, Aldrich M, et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron. 2000;27(3):469–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nishino S, Ripley B, Overeem S, Lammers GJ, Mignot E. Hypocretin (orexin) deficiency in human narcolepsy. Lancet. 2000;355(9197):39–40.

    Article  CAS  PubMed  Google Scholar 

  11. Smart D, Sabido-David C, Brough S, Jewitt F, Johns A, Porter R, et al. SB-334867-A: the first selective orexin-1 receptor antagonist. Br J Pharmacol. 2001;132(6):1179–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mignot E, Lammers GJ, Ripley B, Okun M, Nevsimalova S, Overeem S, et al. The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch Neurol. 2002;59(10):1553–62.

    Article  PubMed  Google Scholar 

  13. Yamanaka A, Beuckmann CT, Willie JT, Hara J, Tsujino N, Mieda M, et al. Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron. 2003;38(5):701–13.

    Article  CAS  PubMed  Google Scholar 

  14. Harris GC, Wimmer M, Aston-Jones G. A role for lateral hypothalamic orexin neurons in reward seeking. Nature. 2005;437(7058):556–9.

    Article  CAS  PubMed  Google Scholar 

  15. Bennett T, Bray D, Neville MW. Suvorexant, a dual orexin receptor antagonist for the management of insomnia. Pharm Ther. 2014;39(4):264.

    Google Scholar 

  16. Irukayama-Tomobe Y, Ogawa Y, Tominaga H, Ishikawa Y, Hosokawa N, Ambai S, et al. Nonpeptide orexin type-2 receptor agonist ameliorates narcolepsy-cataplexy symptoms in mouse models. Proc Natl Acad Sci U S A. 2017;114(22):5731–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sakurai T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci. 2007;8(3):171–81.

    Article  CAS  PubMed  Google Scholar 

  18. Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW. Control of sleep and wakefulness. Physiol Rev. 2012;93(3):1087–187.

    Article  CAS  Google Scholar 

  19. Hagan JJ, Leslie RA, Patel S, Evans ML, Wattam TA, Holmes S, et al. Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc Natl Acad Sci U S A. 1999;96(19):10911–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, De Lecea L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature. 2007;450(7168):420–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sutcliffe JG, de Lecea L. The hypocretins: setting the arousal threshold. Nat Rev Neurosci. 2002;3(5):339–48.

    Article  CAS  PubMed  Google Scholar 

  22. Mileykovskiy BY, Kiyashchenko LI, Siegel JM. Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron. 2005;46(5):787–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dugovic C, Shelton JE, Aluisio LE, Fraser IC, Jiang X, Sutton SW, et al. Blockade of orexin-1 receptors attenuates orexin-2 receptor antagonism-induced sleep promotion in the rat. J Pharmacol Exp Ther. 2009;330(1):142–51.

    Article  CAS  PubMed  Google Scholar 

  24. Tsujino N, Sakurai T. Orexin/hypocretin: a neuropeptide at the interface of sleep, energy homeostasis, and reward system. Pharmacol Rev. 2009;61(2):162–76.

    Article  CAS  PubMed  Google Scholar 

  25. Kalogiannis M, Hsu E, Willie JT, Chemelli RM, Kisanuki YY, Yanagisawa M, et al. Cholinergic modulation of narcoleptic attacks in double orexin receptor knockout mice. PLoS One. 2011;6(4):e18697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang C, Wang Q, Ji B, Pan Y, Xu C, Cheng B, et al. The orexin/receptor system: molecular mechanism and therapeutic potential for neurological diseases. Front Mol Neurosci. 2018;11:220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hara J, Beuckmann CT, Nambu T, Willie JT, Chemelli RM, Sinton CM, et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron. 2001;30(2):345–54.

    Article  CAS  PubMed  Google Scholar 

  28. Thorpe A, Teske JA, Kotz C. Orexin A-induced feeding is augmented by caloric challenge. Am J Physiol Regul Integr Comp Physiol. 2005;289(2):R367–R72.

    Article  CAS  PubMed  Google Scholar 

  29. Mieda M, Sakurai T. Overview of orexin/hypocretin system. Prog Brain Res. 2012;198:5–14.

    Article  CAS  PubMed  Google Scholar 

  30. Shiraishi T, Oomura Y, Sasaki K, Wayner MJ. Effects of leptin and orexin-A on food intake and feeding related hypothalamic neurons. Physiol Behav. 2000;71(3–4):251–61.

    Article  CAS  PubMed  Google Scholar 

  31. Baird J-P, Choe A, Loveland JL, Beck J, Mahoney CE, Lord JS, et al. Orexin-A hyperphagia: hindbrain participation in consummatory feeding responses. Endocrinology. 2009;150(3):1202–16.

    Article  CAS  PubMed  Google Scholar 

  32. Shiuchi T, Haque MS, Okamoto S, Inoue T, Kageyama H, Lee S, et al. Hypothalamic orexin stimulates feeding-associated glucose utilization in skeletal muscle via sympathetic nervous system. Cell Metab. 2009;10(6):466–80.

    Article  CAS  PubMed  Google Scholar 

  33. Funato H, Tsai AL, Willie JT, Kisanuki Y, Williams SC, Sakurai T, et al. Enhanced orexin receptor-2 signaling prevents diet-induced obesity and improves leptin sensitivity. Cell Metab. 2009;9(1):64–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Perez-Leighton CE, Boland K, Teske JA, Billington C, Kotz CM. Behavioral responses to orexin, orexin receptor gene expression, and spontaneous physical activity contribute to individual sensitivity to obesity. Am J Physiol Endocrinol Metab. 2012;303(7):E865–E74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Haynes AC, Chapman H, Taylor C, Moore GB, Cawthorne MA, Tadayyon M, et al. Anorectic, thermogenic and anti-obesity activity of a selective orexin-1 receptor antagonist in Ob/Ob mice. Regul Pept. 2002;104(1–3):153–9.

    Article  CAS  PubMed  Google Scholar 

  36. Yokobori E, Kojima K, Azuma M, Kang KS, Maejima S, Uchiyama M, et al. Stimulatory effect of intracerebroventricular administration of Orexin A on food intake in the zebrafish, Danio rerio. Peptides. 2011;32(7):1357–62.

    Article  CAS  PubMed  Google Scholar 

  37. Aston-Jones G, Smith RJ, Moorman DE, Richardson KA. Role of lateral hypothalamic orexin neurons in reward processing and addiction. Neuropharmacology. 2009;56:112–21.

    Article  CAS  PubMed  Google Scholar 

  38. Lawrence AJ, Cowen MS, Yang H-J, Chen F, Oldfield B. The orexin system regulates alcohol-seeking in rats. Br J Pharmacol. 2006;148(6):752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Plaza-Zabala A, Martín-García E, de Lecea L, Maldonado R, Berrendero F. Hypocretins regulate the anxiogenic-like effects of nicotine and induce reinstatement of nicotine-seeking behavior. J Neurosci. 2010;30(6):2300–10.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Borgland SL, Taha SA, Sarti F, Fields HL, Bonci A. Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. Neuron. 2006;49(4):589–601.

    Article  CAS  PubMed  Google Scholar 

  41. Pasumarthi RK, Reznikov LR, Fadel J. Activation of orexin neurons by acute nicotine. Eur J Pharmacol. 2006;535(1–3):172–6.

    Article  CAS  PubMed  Google Scholar 

  42. Moorman DE, James MH, Kilroy EA, Aston-Jones G. Orexin/hypocretin-1 receptor antagonism reduces ethanol self-administration and reinstatement selectively in highly-motivated rats. Brain Res. 2017;1654:34–42.

    Article  CAS  PubMed  Google Scholar 

  43. Shoblock JR, Welty N, Aluisio L, Fraser I, Motley ST, Morton K, et al. Selective blockade of the orexin-2 receptor attenuates ethanol self-administration, place preference, and reinstatement. Psychopharmacology. 2011;215(1):191–203.

    Article  CAS  PubMed  Google Scholar 

  44. Di Bernardo G, Messina G, Capasso S, Del Gaudio S, Cipollaro M, Peluso G, et al. Sera of overweight people promote in vitro adipocyte differentiation of bone marrow stromal cells. Stem Cell Res Ther. 2014;5(1):4.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Monda M, Messina G, Scognamiglio I, Lombardi A, Martin GA, Sperlongano P, et al. Short-term diet and moderate exercise in young overweight men modulate cardiocyte and hepatocarcinoma survival by oxidative stress. Oxid Med Cell Longev. 2014;2014:131024.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Ciriello J, McMurray JC, Babic T, de Oliveira CV. Collateral axonal projections from hypothalamic hypocretin neurons to cardiovascular sites in nucleus ambiguus and nucleus tractus solitarius. Brain Res. 2003;991(1–2):133–41.

    Article  CAS  PubMed  Google Scholar 

  47. Shirasaka T, Kunitake T, Takasaki M, Kannan H. Neuronal effects of orexins: relevant to sympathetic and cardiovascular functions. Regul Pept. 2002;104(1–3):91–5.

    Article  CAS  PubMed  Google Scholar 

  48. de Oliveira CV, Rosas-Arellano MP, Solano-Flores LP, Ciriello J. Cardiovascular effects of hypocretin-1 in nucleus of the solitary tract. Am J Physiol Heart Circul Physiol. 2003;284(4):H1369–H77.

    Article  Google Scholar 

  49. Smith PM, Connolly BC, Ferguson AV. Microinjection of orexin into the rat nucleus tractus solitarius causes increases in blood pressure. Brain Res. 2002;950(1–2):261–7.

    Article  CAS  PubMed  Google Scholar 

  50. de Oliveira CV, Ciriello J. Cardiovascular responses to hypocretin-1 in nucleus ambiguus of the ovariectomized female rat. Brain Res. 2003;986(1–2):148–56.

    Article  PubMed  CAS  Google Scholar 

  51. Smith P, Samson W, Ferguson AJ. Cardiovascular actions of orexin-A in the rat subfornical organ. J Neuroendocrinol. 2007;19(1):7–13.

    Article  CAS  PubMed  Google Scholar 

  52. Dergacheva O, Wang X, Huang Z-G, Bouairi E, Stephens C, Gorini C, et al. Hypocretin-1 (orexin-A) facilitates inhibitory and diminishes excitatory synaptic pathways to cardiac vagal neurons in the nucleus ambiguus. J Pharmacol Exp Ther. 2005;314(3):1322–7.

    Article  CAS  PubMed  Google Scholar 

  53. Deng B-S, Nakamura A, Zhang W, Yanagisawa M, Fukuda Y, Kuwaki T. Contribution of orexin in hypercapnic chemoreflex: evidence from genetic and pharmacological disruption and supplementation studies in mice. J Appl Physiol. 2007;103(5):1772–9.

    Article  CAS  PubMed  Google Scholar 

  54. Shahid I, Rahman A, Pilowsky P. Intrathecal Orexin A increases sympathetic outflow and respiratory drive, enhances baroreflex sensitivity and blocks the somato-sympathetic reflex. Br J Pharmacol. 2011;162(4):961–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Terada J, Nakamura A, Zhang W, Yanagisawa M, Kuriyama T, Fukuda Y, et al. Ventilatory long-term facilitation in mice can be observed during both sleep and wake periods and depends on orexin. J Appl Physiol. 2008;104(2):499–507.

    Article  PubMed  Google Scholar 

  56. Dutschmann M, Kron M, Mörschel M, Gestreau C. Activation of orexin B receptors in the pontine Kölliker-fuse nucleus modulates pre-inspiratory hypoglossal motor activity in rat. Respir Physiol Neurobiol. 2007;159(2):232–5.

    Article  CAS  PubMed  Google Scholar 

  57. Liu ZB, Song NN, Geng WY, Jin WZ, Li L, Cao YX, et al. Orexin-A and respiration in a rat model of smoke-induced chronic obstructive pulmonary disease. Clin Exp Pharmacol Physiol. 2010;37(10):963–8.

    Article  CAS  PubMed  Google Scholar 

  58. Williams RH, Jensen LT, Verkhratsky A, Fugger L, Burdakov D. Control of hypothalamic orexin neurons by acid and CO2. Proc Natl Acad Sci U S A. 2007;104(25):10685–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Busquets X, Barbé F, Barceló A, de la Peña M, Sigritz N, Mayoralas LR, et al. Decreased plasma levels of orexin-A in sleep apnea. Respiration. 2004;71(6):575–9.

    Article  CAS  PubMed  Google Scholar 

  60. Heinonen M, Purhonen A, Mäkelä K, Herzig K. Functions of orexins in peripheral tissues. Acta Physiol. 2008;192(4):471–85.

    Article  CAS  Google Scholar 

  61. Ehrstrom M, Gustafsson T, Finn A, Kirchgessner A, Gryback P, Jacobsson H, et al. Inhibitory effect of exogenous Orexin A on gastric emptying, plasma leptin, and the distribution of orexin and orexin receptors in the gut and pancreas in man. J Clin Endocrinol Metab. 2005;90(4):2370–7.

    Article  CAS  PubMed  Google Scholar 

  62. Kirchgessner AL, Liu M. Orexin synthesis and response in the gut. Neuron. 1999;24(4):941–51.

    Article  CAS  PubMed  Google Scholar 

  63. Nakabayashi M, Suzuki T, Takahashi K, Totsune K, Muramatsu Y, Kaneko C, et al. Orexin-A expression in human peripheral tissues. Mol Cell Endocrinol. 2003;205(1–2):43–50.

    Article  CAS  PubMed  Google Scholar 

  64. Naslund E, Ehrstrom M, Ma J, Hellstrom P, Kirchgessner AL. Localization and effects of orexin on fasting motility in the rat duodenum. Am J Physiol Gastrointest Liver Physiol. 2002;282(3):G470–G9.

    Article  CAS  PubMed  Google Scholar 

  65. Bengtsson MW, Makela K, Sjoblom M, Uotila S, Akerman KE, Herzig K-H, et al. Food-induced expression of orexin receptors in rat duodenal mucosa regulates the bicarbonate secretory response to orexin-A. Am J Physiol Gastrointest Liver Physiol. 2007;293(2):G501–G9.

    Article  CAS  PubMed  Google Scholar 

  66. Romanski K, Gozdziewska-Hartlajczuk K. Role of orexins in regulation of gastrointestinal motility. J Pre-Clin Clin Res. 2009;3(2).

    Google Scholar 

  67. Ouedraogo R, Näslund E, Kirchgessner AL. Glucose regulates the release of orexin-A from the endocrine pancreas. Diabetes. 2003;52(1):111–7.

    Article  CAS  PubMed  Google Scholar 

  68. Nowak KW, Strowski MZ, Switonska MM, Kaczmarek P, Singh V, Fabis M, et al. Evidence that orexins A and B stimulate insulin secretion from rat pancreatic islets via both receptor subtypes. Int J Mol Med. 2005;15(6):969–72.

    CAS  PubMed  Google Scholar 

  69. Nowak KW, Maćkowiak P, Świtońska MM, Fabiś M, Malendowicz LK. Acute orexin effects on insulin secretion in the rat: in vivo and in vitro studies. Life Sci. 1999;66(5):449–54.

    Article  Google Scholar 

  70. Ehrström M, Levin F, Kirchgessner AL, Schmidt PT, Hilsted LM, Grybäck P, et al. Stimulatory effect of endogenous Orexin A on gastric emptying and acid secretion independent of gastrin. Regul Pept. 2005;132(1–3):9–16.

    Article  PubMed  CAS  Google Scholar 

  71. Miyasaka K, Masuda M, Kanai S, Sato N, Kurosawa M, Funakoshi A. Central orexin-A stimulates pancreatic exocrine secretion via the vagus. Pancreas. 2002;25(4):400–4.

    Article  PubMed  Google Scholar 

  72. Harris D, Go V, Reeve J Jr, Wu S. Stimulation of amylase release by orexin is mediated by orexin 2 receptor in AR42J cells. Pancreas. 2002;25(4):405–10.

    Article  CAS  PubMed  Google Scholar 

  73. Sugimoto T, Nagake Y, Sugimoto S, Akagi S, Ichikawa H, Nakamura Y, et al. Plasma orexin concentrations in patients on hemodialysis. Nephron. 2002;90(4):379–83.

    Article  PubMed  Google Scholar 

  74. Takahashi K, Arihara Z, Suzuki T, Sone M, Kikuchi K, Sasano H, et al. Expression of orexin-A and orexin receptors in the kidney and the presence of orexin-A-like immunoreactivity in human urine. Peptides. 2006;27(4):871–7.

    Article  CAS  PubMed  Google Scholar 

  75. Peng H-Y, Chang H-M, Chang SY, Tung K-C, Lee S-D, Chou D, et al. Orexin-A modulates glutamatergic NMDA-dependent spinal reflex potentiation via inhibition of NR2B subunit. Am J Physiol Endocrinol Metab. 2008;295(1):E117–E29.

    Article  CAS  PubMed  Google Scholar 

  76. Kobayashi M, Nomura M, Fujihara H, Suzuki H, Otsubo H, Nishii H, et al. Involvement of orexin-A on micturition reflex in normal and cyclophosphamide-induced cystitis bladder in rat. Peptides. 2009;30(12):2348–56.

    Article  CAS  PubMed  Google Scholar 

  77. Karteris E, Chen J, Randeva HS. Expression of human prepro-orexin and signaling characteristics of orexin receptors in the male reproductive system. J Clin Endocrinol Metab. 2004;89(4):1957–62.

    Article  CAS  PubMed  Google Scholar 

  78. Silveyra P, Lux-Lantos V, Libertun C. Both orexin receptors are expressed in rat ovaries and fluctuate with the estrous cycle: effects of orexin receptor antagonists on gonadotropins and ovulation. Am J Physiol Endocrinol Metab. 2007;293(4):E977–E85.

    Article  CAS  PubMed  Google Scholar 

  79. Digby J, Chen J, Tang J, Lehnert H, Matthews R, Randeva HS. Orexin receptor expression in human adipose tissue: effects of orexin-A and orexin-B. J Endocrinol. 2006;191(1):129–36.

    Article  CAS  PubMed  Google Scholar 

  80. Zwirska-Korczala K, Adamczyk-Sowa M, Sowa P, Pilc K, Suchanek R, Pierzchala K, et al. Role of leptin, ghrelin, angiotensin II and orexins. J Physiol Pharmacol. 2007;58(1):53–64.

    PubMed  Google Scholar 

  81. Komaki G, Matsumoto Y, Nishikata H, Kawai K, Nozaki T, Takii M, et al. Orexin-A and leptin change inversely in fasting non-obese subjects. Eur J Endocrinol. 2001;144(6):645–51.

    Article  CAS  PubMed  Google Scholar 

  82. Adam J, Menheere P, Van Dielen F, Soeters P, Buurman W, Greve JW. Decreased plasma orexin-A levels in obese individuals. Int J Obes. 2002;26(2):274–6.

    Article  CAS  Google Scholar 

  83. Baranowska B, Wolinska-Witort E, Martynska M, Chmielowska M, Baranowska-Bik A. Plasma Orexin A, orexin B, leptin, neuropeptide Y (NPY) and insulin in obese women. Neuroendocrinol Lett. 2005;26(4):293–6.

    CAS  PubMed  Google Scholar 

  84. Heinonen M, Purhonen A, Miettinen P, Pääkkönen M, Pirinen E, Alhava E, et al. Apelin, orexin-A and leptin plasma levels in morbid obesity and effect of gastric banding. Regul Pept. 2005;130(1–2):7–13.

    Article  CAS  PubMed  Google Scholar 

  85. Higuchi S, Usui A, Murasaki M, Matsushita S, Nishioka N, Yoshino A, et al. Plasma orexin-A is lower in patients with narcolepsy. Neurosci Lett. 2002;318(2):61–4.

    Article  CAS  PubMed  Google Scholar 

  86. Ferguson AV, Samson WK. The orexin/hypocretin system: a critical regulator of neuroendocrine and autonomic function. Front Neuroendocrinol. 2003;24(3):141–50.

    Article  CAS  PubMed  Google Scholar 

  87. Barb C, Matteri RL. Orexin-B modulates luteinizing hormone and growth hormone secretion from porcine pituitary cells in culture. Domest Anim Endocrinol. 2005;28(3):331–7.

    Article  CAS  PubMed  Google Scholar 

  88. Seoane L, Tovar S, Perez D, Mallo F, Lopez M, Senaris R, et al. Orexin A suppresses in vivo GH secretion. Eur J Endocrinol. 2004;150(5):731–6.

    Article  CAS  PubMed  Google Scholar 

  89. Xu R, Wang Q, Yan M, Hernandez M, Gong C, Boon WC, et al. Orexin-A augments voltage-gated Ca2+ currents and synergistically increases growth hormone (GH) secretion with GH-releasing hormone in primary cultured ovine somatotropes. Endocrinology. 2002;143(12):4609–19.

    Article  CAS  PubMed  Google Scholar 

  90. Russell S, Kim M, Small C, Abbott C, Morgan D, Taheri S, et al. Central administration of Orexin A suppresses basal and domperidone stimulated plasma prolactin. J Neuroendocrinol. 2000;12(12):1213–8.

    Article  CAS  PubMed  Google Scholar 

  91. Overeem S, Kok SW, Lammers GJ, Vein AA, Frolich M, Meinders AE, et al. Somatotropic axis in hypocretin-deficient narcoleptic humans: altered circadian distribution of GH-secretory events. Am J Physiol Endocrinol Metab. 2003;284(3):E641–E7.

    Article  CAS  PubMed  Google Scholar 

  92. Jones DN, Gartlon J, Parker F, Taylor SG, Routledge C, Hemmati P, et al. Effects of centrally administered orexin-B and orexin-A: a role for orexin-1 receptors in orexin-B-induced hyperactivity. Psychopharmacology. 2001;153(2):210–8.

    Article  CAS  PubMed  Google Scholar 

  93. Molik E, Zieba D, Misztal T, Romanowicz K, Wszola M, Wierzchos E, et al. The role of Orexin A in the control of prolactin and growth hormone secretions in sheep-in vitro study. J Physiol Pharmacol. 2008;59(Suppl 9):91–100.

    PubMed  Google Scholar 

  94. Russell SH, Small CJ, Kennedy AR, Stanley SA, Seth A, Murphy KG, et al. Orexin A interactions in the hypothalamo-pituitary gonadal axis. Endocrinology. 2001;142(12):5294–302.

    Article  CAS  PubMed  Google Scholar 

  95. Samson WK, Taylor MM. Hypocretin/orexin suppresses corticotroph responsiveness in vitro. Am J Physiol Regul Integr Comp Physiol. 2001;281(4):R1140–R5.

    Article  CAS  PubMed  Google Scholar 

  96. Mitsuma T, Hirooka Y, Mori Y, Kayama M, Adachi K, Rhue N, et al. Effects of Orexin A on thyrotropin-releasing hormone and thyrotropin secretion in rats. Horm Metab Res. 1999;31(11):606–9.

    Article  CAS  PubMed  Google Scholar 

  97. Kok SW, Roelfsema F, Overeem S, Lammers GJ, Frolich M, Meinders AE, et al. Altered setting of the pituitary-thyroid ensemble in hypocretin-deficient narcoleptic men. Am J Physiol Endocrinol Metab. 2005;288(5):E892–E9.

    Article  CAS  PubMed  Google Scholar 

  98. Al-Barazanji K, Wilson S, Baker J, Jessop D, Harbuz MJ. Central orexin-A activates hypothalamic-pituitary-adrenal axis and stimulates hypothalamic corticotropin releasing factor and arginine vasopressin neurones in conscious rats. J Neuroendocrinol. 2001;13(5):421–4.

    Article  CAS  PubMed  Google Scholar 

  99. Ziolkowska A, Spinazzi R, Albertin G, Nowak M, Malendowicz LK, Tortorella C, et al. Orexins stimulate glucocorticoid secretion from cultured rat and human adrenocortical cells, exclusively acting via the OX1 receptor. J Steroid Biochem Mol Biol. 2005;96(5):423–9.

    Article  CAS  PubMed  Google Scholar 

  100. Kawada Y, Ueno S, Asayama K, Tsutsui M, Utsunomiya K, Toyohira Y, et al. Stimulation of catecholamine synthesis by orexin-A in bovine adrenal medullary cells through orexin receptor 1. Biochem Pharmacol. 2003;66(1):141–7.

    Article  CAS  PubMed  Google Scholar 

  101. Mazzocchi G, Malendowicz L, Gottardo L, Aragona F, Nussdorfer GG. Orexin A stimulates cortisol secretion from human adrenocortical cells through activation of the adenylate cyclase-dependent signaling cascade. J Clin Endocrinol Metab. 2001;86(2):778–82.

    Article  CAS  PubMed  Google Scholar 

  102. Nanmoku T, Isobe K, Sakurai T, Yamanaka A, Takekoshi K, Kawakami Y, et al. Orexins suppress catecholamine synthesis and secretion in cultured PC12 cells. Biochem Biophys Res Commun. 2000;274(2):310–5.

    Article  CAS  PubMed  Google Scholar 

  103. Kok S, Roelfsema F, Overeem S, Lammers G, Frolich M, Meinders A, et al. Pulsatile LH release is diminished, whereas FSH secretion is normal, in hypocretin-deficient narcoleptic men. Am J Physiol Endocrinol Metab. 2004;287(4):E630–E6.

    Article  CAS  PubMed  Google Scholar 

  104. Brunton P, Russell JA. Hypothalamic-pituitary-adrenal responses to centrally administered orexin-A are suppressed in pregnant rats. J Neuroendocrinol. 2003;15(7):633–7.

    Article  CAS  PubMed  Google Scholar 

  105. Pu S, Dhillon H, Moldawer L, Kalra P, Kalra SP. Neuropeptide Y counteracts the anorectic and weight reducing effects of ciliary neurotropic factor. J Neuroendocrinol. 2000;12(9):827–32.

    Article  CAS  PubMed  Google Scholar 

  106. Small C, Goubillon M-L, Murray JF, Siddiqui A, Grimshaw S, Young H, et al. Central Orexin A has site-specific effects on luteinizing hormone release in female rats. Endocrinology. 2003;144(7):3225–36.

    Article  CAS  PubMed  Google Scholar 

  107. Holmqvist T, Åkerman KE, Kukkonen JP. High specificity of human orexin receptors for orexins over neuropeptide Y and other neuropeptides. Neurosci Lett. 2001;305(3):177–80.

    Article  CAS  PubMed  Google Scholar 

  108. Bigal ME, Hargreaves RJ. Why does sleep stop migraine? Curr Pain Headache Rep. 2013;17(10):369.

    Article  PubMed  Google Scholar 

  109. Saper C, Swanson L, Cowan WM. An autoradiographic study of the efferent connections of the lateral hypothalamic area in the rat. J Comp Neurol. 1979;183(4):689–706.

    Article  CAS  PubMed  Google Scholar 

  110. Villalobos J, Ferssiwi A. The differential descending projections from the anterior, central and posterior regions of the lateral hypothalamic area: an autoradiographic study. Neurosci Lett. 1987;81(1–2):95–9.

    Article  CAS  PubMed  Google Scholar 

  111. Karteris E, Randeva H, Grammatopoulos D, Jaffe R, Hillhouse EW. Expression anwd coupling characteristics of the CRH and orexin type 2 receptors in human fetal adrenals. J Clin Endocrinol Metab. 2001;86(9):4512–9.

    Article  CAS  PubMed  Google Scholar 

  112. Randeva H, Karteris E, Grammatopoulos D, Hillhouse EW. Expression of orexin-A and functional orexin type 2 receptors in the human adult adrenals: implications for adrenal function and energy homeostasis. J Clin Endocrinol Metab. 2001;86(10):4808–13.

    Article  CAS  PubMed  Google Scholar 

  113. Xu T-R, Yang Y, Ward R, Gao L, Liu Y. Orexin receptors: multi-functional therapeutic targets for sleeping disorders, eating disorders, drug addiction, cancers and other physiological disorders. Cell Signal. 2013;25(12):2413–23.

    Article  CAS  PubMed  Google Scholar 

  114. Ivanov A, Aston-Jones G. Hypocretin/orexin depolarizes and decreases potassium conductance in locus coeruleus neurons. Neuroreport. 2000;11(8):1755–8.

    Article  CAS  PubMed  Google Scholar 

  115. Eriksson KS, Sergeeva O, Brown RE, Haas HL. Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. J Neurosci. 2001;21(23):9273–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hoang QV, Bajic D, Yanagisawa M, Nakajima S, Nakajima Y, Effects of orexin (hypocretin) on GIRK channels. J Neurophysiol. 2003;90(2):693–702.

    Article  CAS  PubMed  Google Scholar 

  117. van den Pol AN, Ghosh PK, Rj L, Li Y, Aghajanian GK, Gao XB. Hypocretin (orexin) enhances neuron activity and cell synchrony in developing mouse GFP-expressing locus coeruleus. J Physiol. 2002;541(1):169–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Peltonen HM, Magga JM, Bart G, Turunen PM, Antikainen MS, Kukkonen JP, et al. Involvement of TRPC3 channels in calcium oscillations mediated by OX1 orexin receptors. Biochem Biophys Res Commun. 2009;385(3):408–12.

    Article  CAS  PubMed  Google Scholar 

  119. Van den Pol AJP, Gao XB, Obrietan K, Kilduff TS, Belousov AB. Presynaptic and postsynaptic actions and modulation of neuroendocrine neurons by a new hypothalamic peptide, hypocretin/orexin. J Neurosci. 1998;18(19):7962–71.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Liu R-J, Van Den Pol AN, Aghajanian GK. Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions. J Neurosci. 2002;22(21):9453–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Borgland S, Storm E, Bonci A. Orexin B/hypocretin 2 increases glutamatergic transmission to ventral tegmental area neurons. Eur J Neurosci. 2008;28(8):1545–56.

    Article  CAS  PubMed  Google Scholar 

  122. Fronczek R, Lammers GJ, Balesar R, Unmehopa UA, Swaab DF. The number of hypothalamic hypocretin (orexin) neurons is not affected in Prader-Willi syndrome. J Clin Endocrinol Metab. 2005;90(9):5466–70.

    Article  CAS  PubMed  Google Scholar 

  123. Yoshida K, McCormack S, España RA, Crocker A, Scammell TE. Afferents to the orexin neurons of the rat brain. J Comp Neurol. 2006;494(5):845–61.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Chou TC, Scammell TE, Gooley JJ, Gaus SE, Saper CB, Lu J. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J Neurosci. 2003;23(33):10691–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Equihua AC, La Herrán-Arita D, Alberto K, Drucker-Colin R. Orexin receptor antagonists as therapeutic agents for insomnia. Front Pharmacol. 2013;4:163.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Smart D. Cloning, expression and characterisation of the orexin receptors. Regul Pept. 2000;89:82.

    Google Scholar 

  127. Li J, Hu Z, de Lecea L. The hypocretins/orexins: integrators of multiple physiological functions. Br J Pharmacol. 2014;171(2):332–50.

    Article  CAS  PubMed  Google Scholar 

  128. Johnson PL, Truitt W, Fitz SD, Minick PE, Dietrich A, Sanghani S, et al. A key role for orexin in panic anxiety. Nat Med. 2010;16(1):111–5.

    Article  CAS  PubMed  Google Scholar 

  129. Jupp B, Krivdic B, Krstew E, Lawrence AJ. The orexin 1 receptor antagonist SB-334867 dissociates the motivational properties of alcohol and sucrose in rats. Brain Res. 2011;1391:54–9.

    Article  CAS  PubMed  Google Scholar 

  130. Smith M, Piper D, Duxon M, Upton N. Evidence implicating a role for orexin-1 receptor modulation of paradoxical sleep in the rat. Neurosci Lett. 2003;341(3):256–8.

    Article  CAS  PubMed  Google Scholar 

  131. Smith RJ, Aston-Jones G. Orexin/hypocretin 1 receptor antagonist reduces heroin self-administration and cue-induced heroin seeking. Eur J Neurosci. 2012;35(5):798–804.

    Article  PubMed  PubMed Central  Google Scholar 

  132. White C, Ishii Y, Mendoza T, Upton N, Stasi L, Bray G, et al. Effect of a selective OX1R antagonist on food intake and body weight in two strains of rats that differ in susceptibility to dietary-induced obesity. Peptides. 2005;26(11):2331–8.

    Article  CAS  PubMed  Google Scholar 

  133. Lebold TP, Bonaventure P, Shireman BT. Selective orexin receptor antagonists. Bioorg Med Chem Lett. 2013;23(17):4761–9.

    Article  CAS  PubMed  Google Scholar 

  134. Morairty SR, Revel FG, Malherbe P, Moreau J-L, Valladao D, Wettstein JG, et al. Dual hypocretin receptor antagonism is more effective for sleep promotion than antagonism of either receptor alone. PLoS One. 2012;7(7):e39131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Steiner MA, Gatfield J, Brisbare-Roch C, Dietrich H, Treiber A, Jenck F, et al. Discovery and characterization of ACT-335827, an orally available, brain penetrant orexin receptor type 1 selective antagonist. ChemMedChem. 2013;8(6):898–903.

    Article  CAS  PubMed  Google Scholar 

  136. Kummangal BA, Kumar D, Mallick HN. Intracerebroventricular injection of orexin-2 receptor antagonist promotes REM sleep. Behav Brain Res. 2013;237:59–62.

    Article  CAS  PubMed  Google Scholar 

  137. Gozzi A, Turrini G, Piccoli L, Massagrande M, Amantini D, Antolini M, et al. Functional magnetic resonance imaging reveals different neural substrates for the effects of orexin-1 and orexin-2 receptor antagonists. PLoS One. 2011;6(1):e16406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Malherbe P, Borroni E, Pinard E, Wettstein JG, Knoflach FJ. Biochemical and electrophysiological characterization of almorexant, a dual orexin 1 receptor (OX1)/orexin 2 receptor (OX2) antagonist: comparison with selective OX1 and OX2 antagonists. Mol Pharmacol. 2009;76(3):618–31.

    Article  CAS  PubMed  Google Scholar 

  139. Brisbare-Roch C, Dingemanse J, Koberstein R, Hoever P, Aissaoui H, Flores S, et al. Promotion of sleep by targeting the orexin system in rats, dogs and humans. Nat Med. 2007;13(2):150–5.

    Article  CAS  PubMed  Google Scholar 

  140. Hoever P, Dorffner G, Beneš H, Penzel T, Danker-Hopfe H, Barbanoj M, et al. Orexin receptor antagonism, a new sleep-enabling paradigm: a proof-of-concept clinical trial. Clin Pharmacol Ther. 2012;91(6):975–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Cox CD, Breslin MJ, Whitman DB, Schreier JD, McGaughey GB, Bogusky MJ, et al. Discovery of the dual orexin receptor antagonist [(7 R)-4-(5-chloro-1, 3-benzoxazol-2-yl)-7-methyl-1, 4-diazepan-1-yl][5-methyl-2-(2 H−1, 2, 3-triazol-2-yl) phenyl] methanone (MK-4305) for the treatment of insomnia. J Med Chem. 2010;53(14):5320–32.

    Article  CAS  PubMed  Google Scholar 

  142. Winrow CJ, Gotter AL, Cox CD, Doran SM, Tannenbaum PL, Breslin MJ, et al. Promotion of sleep by suvorexant—a novel dual orexin receptor antagonist. J Neurogenet. 2011;25(1–2):52–61.

    Article  CAS  PubMed  Google Scholar 

  143. Herring WJ, Snyder E, Budd K, Hutzelmann J, Snavely D, Liu K, et al. Orexin receptor antagonism for treatment of insomnia: a randomized clinical trial of suvorexant. Neurology. 2012;79(23):2265–74.

    Article  CAS  PubMed  Google Scholar 

  144. Bettica P, Squassante L, Zamuner S, Nucci G, Danker-Hopfe H, Ratti E. The orexin antagonist SB-649868 promotes and maintains sleep in men with primary insomnia. Sleep. 2012;35(8):1097–104.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Asahi S, Egashira S-I, Matsuda M, Iwaasa H, Kanatani A, Ohkubo M, et al. Development of an orexin-2 receptor selective agonist, [ala 11, D-Leu 15] orexin-B. Bioorg Med Chem Lett. 2003;13(1):111–3.

    Article  CAS  PubMed  Google Scholar 

  146. Deadwyler SA, Porrino L, Siegel JM, Hampson RE. Systemic and nasal delivery of orexin-A (Hypocretin-1) reduces the effects of sleep deprivation on cognitive performance in nonhuman primates. J Neurosci. 2007;27(52):14239–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lee J, Reddy MM, Kodadek T. Discovery of an orexin receptor positive potentiator. Chem Sci. 2010;1(1):48–54.

    Article  CAS  Google Scholar 

  148. Turku A, Borrel A, Leino TO, Karhu L, Kukkonen JP, Xhaard H. Pharmacophore model to discover OX1 and OX2 orexin receptor ligands. J Med Chem. 2016;59(18):8263–75.

    Article  CAS  PubMed  Google Scholar 

  149. Turku A, Rinne MK, Boije Af Gennäs G, Xhaard H, Lindholm D, Kukkonen JP. Orexin receptor agonist Yan 7874 is a weak agonist of orexin/hypocretin receptors and shows orexin receptor-independent cytotoxicity. PLoS One. 2017;12(6):e0178526.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Nagahara T, Saitoh T, Kutsumura N, Irukayama-Tomobe Y, Ogawa Y, Kuroda D, et al. Design and synthesis of non-peptide, selective orexin receptor 2 agonists. J Med Chem. 2015;58(20):7931–7.

    Article  CAS  PubMed  Google Scholar 

  151. Brown RE, Sergeeva O, Eriksson KS, Haas HL. Orexin A excites serotonergic neurons in the dorsal raphe nucleus of the rat. Neuropharmacology. 2001;40(3):457–9.

    Article  CAS  PubMed  Google Scholar 

  152. Salomon RM, Ripley B, Kennedy JS, Johnson B, Schmidt D, Zeitzer JM, et al. Diurnal variation of cerebrospinal fluid hypocretin-1 (orexin-A) levels in control and depressed subjects. Biol Psychiatry. 2003;54(2):96–104.

    Article  CAS  PubMed  Google Scholar 

  153. Allard JS, Tizabi Y, Shaffery JP, Trouth CO, Manaye K. Stereological analysis of the hypothalamic hypocretin/orexin neurons in an animal model of depression. Neuropeptides. 2004;38(5):311–5.

    Article  CAS  PubMed  Google Scholar 

  154. Rotter A, Asemann R, Decker A, Kornhuber J, Biermann T. Orexin expression and promoter-methylation in peripheral blood of patients suffering from major depressive disorder. J Affect Disord. 2011;131(1–3):186–92.

    Article  CAS  PubMed  Google Scholar 

  155. Scott MM, Marcus JN, Pettersen A, Birnbaum SG, Mochizuki T, Scammell TE, et al. Hcrtr 1 and 2 signaling differentially regulates depression-like behaviors. Behav Brain Res. 2011;222(2):289–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Arendt DH, Ronan PJ, Oliver KD, Callahan LB, Summers TR, Summers CH. Depressive behavior and activation of the orexin/hypocretin system. Behav Neurosci. 2013;127(1):86.

    Article  CAS  PubMed  Google Scholar 

  157. Miczek KA, Nikulina EM, Shimamoto A, Covington HE. Escalated or suppressed cocaine reward, tegmental BDNF, and accumbal dopamine caused by episodic versus continuous social stress in rats. J Neurosci. 2011;31(27):9848–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Roh JH, Jiang H, Finn MB, Stewart FR, Mahan TE, Cirrito JR, et al. Potential role of orexin and sleep modulation in the pathogenesis of Alzheimer’s disease. J Exp Med. 2014;211(13):2487–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Urrestarazu E, Iriarte J. Clinical management of sleep disturbances in Alzheimer’s disease: current and emerging strategies. Nat Sci Sleep. 2016;8:21.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Gabelle A, Jaussent I, Hirtz C, Vialaret J, Navucet S, Grasselli C, et al. Cerebrospinal fluid levels of orexin-A and histamine, and sleep profile within the Alzheimer process. Neurobiol Aging. 2017;53:59–66.

    Article  CAS  PubMed  Google Scholar 

  161. Fronczek R, van Geest S, Frölich M, Overeem S, Roelandse FW, Lammers GJ, et al. Hypocretin (orexin) loss in Alzheimer’s disease. Neurobiol Aging. 2012;33(8):1642–50.

    Article  CAS  PubMed  Google Scholar 

  162. Liguori C, Nuccetelli M, Izzi F, Sancesario G, Romigi A, Martorana A, et al. Rapid eye movement sleep disruption and sleep fragmentation are associated with increased orexin-A cerebrospinal-fluid levels in mild cognitive impairment due to Alzheimer’s disease. Neurobiol Aging. 2016;40:120–6.

    Article  CAS  PubMed  Google Scholar 

  163. Couvineau A, Dayot S, Nicole P, Gratio V, Rebours V, Couvelard A, et al. The anti-tumoral properties of orexin/Hypocretin hypothalamic neuropeptides: an unexpected therapeutic role. Front Endocrinol. 2018;9:573.

    Article  Google Scholar 

  164. Rouet-Benzineb P, Rouyer-Fessard C, Jarry A, Avondo V, Pouzet C, Yanagisawa M, et al. Orexins acting at native OX1 receptor in colon cancer and neuroblastoma cells or at recombinant OX1 receptor suppress cell growth by inducing apoptosis. J Biol Chem. 2004;279(44):45875–86.

    Article  CAS  PubMed  Google Scholar 

  165. Spinazzi R, Ziolkowska A, Neri G, Nowak M, Rebuffat P, Nussdorfer GG, et al. Orexins modulate the growth of cultured rat adrenocortical cells, acting through type 1 and type 2 receptors coupled to the MAPK p 42/p 44-and p 38-dependent cascades. Int J Mol Med. 2005;15(5):847–52.

    CAS  PubMed  Google Scholar 

  166. Kim M-K, Park H-J, Kim S-R, Choi YK, Shin HK, Jeon J-H, et al. Angiogenic role of orexin-A via the activation of extracellular signal-regulated kinase in endothelial cells. Biochem Biophys Res Commun. 2010;403(1):59–65.

    Article  CAS  PubMed  Google Scholar 

  167. Nokura K, Kanbayashi T, Ozeki T, Koga H, Zettsu T, Yamamoto H, et al. Hypersomnia, asterixis and cataplexy in association with Orexin A-reduced hypothalamic tumor. J Neurol. 2004;251(12):1534.

    Article  PubMed  Google Scholar 

  168. Malendowicz W, Szyszka M, Ziolkowska A, Rucinski M, Kwias Z. Elevated expression of orexin receptor 2 (HCRTR2) in benign prostatic hyperplasia is accompanied by lowered serum Orexin A concentrations. Int J Mol Med. 2011;27(3):377–83.

    Article  CAS  PubMed  Google Scholar 

  169. Dehan P, Canon C, Trooskens G, Rehli M, Munaut C, Van Criekinge W, et al. Expression of type 2 orexin receptor in human endometrium and its epigenetic silencing in endometrial cancer. J Clin Endocrinol Metab. 2013;98(4):1549–57.

    Article  CAS  PubMed  Google Scholar 

  170. Kishida M, Ishige K, Horibe T, Tada N, Koibuchi N, Shoda J, et al. Orexin 2 receptor as a potential target for immunotoxin and antibody-drug conjugate cancer therapy. Oncol Lett. 2012;3(3):525–9.

    Article  CAS  PubMed  Google Scholar 

  171. Nakamachi T, Endo S, Ohtaki H, Yin L, Kenji D, Kudo Y, et al. Orexin-1 receptor expression after global ischemia in mice. Regul Pept. 2005;126(1–2):49–54.

    Article  CAS  PubMed  Google Scholar 

  172. Irving E, Harrison D, Babbs A, Mayes A, Campbell C, Hunter A, et al. Increased cortical expression of the orexin-1 receptor following permanent middle cerebral artery occlusion in the rat. Neurosci Lett. 2002;324(1):53–6.

    Article  CAS  PubMed  Google Scholar 

  173. Nishino S, Kanbayashi T. Symptomatic narcolepsy, cataplexy and hypersomnia, and their implications in the hypothalamic hypocretin/orexin system. Sleep Med Rev. 2005;9(4):269–310.

    Article  PubMed  Google Scholar 

  174. Dohi K, Nishino S, Nakamachi T, Ohtaki H, Morikawa K, Takeda T, et al. CSF Orexin A concentrations and expressions of the orexin-1 receptor in rat hippocampus after cardiac arrest. Neuropeptides. 2006;40(4):245–50.

    Article  CAS  PubMed  Google Scholar 

  175. Kitamura E, Hamada J, Kanazawa N, Yonekura J, Masuda R, Sakai F, et al. The effect of orexin-A on the pathological mechanism in the rat focal cerebral ischemia. Neurosci Res. 2010;68(2):154–7.

    Article  CAS  PubMed  Google Scholar 

  176. Yuan L-B, Dong H-l, Zhang H-P, Zhao R-N, Gong G, Chen X-M, et al. Neuroprotective effect of orexin-A is mediated by an increase of hypoxia-inducible factor-1 activity in rat. Anesthesiology. 2011;114(2):340–54.

    Article  CAS  PubMed  Google Scholar 

  177. Harada S, Yamazaki Y, Tokuyama S. Orexin-A suppresses postischemic glucose intolerance and neuronal damage through hypothalamic brain-derived neurotrophic factor. J Pharm Exp Ther. 2013;344(1):276–85.

    Article  CAS  Google Scholar 

  178. Xiong X, White RE, Xu L, Yang L, Sun X, Zou B, et al. Mitigation of murine focal cerebral ischemia by the hypocretin/orexin system is associated with reduced inflammation. Stroke. 2013;44(3):764–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Song J, Kim E, Kim C-H, Song H-T, Lee JE. The role of orexin in post-stroke inflammation, cognitive decline, and depression. Mol Brain. 2015;8(1):16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Mobarakeh JI, Takahashi K, Sakurada S, Nishino S, Watanabe H, Kato M, et al. Enhanced antinociception by intracerebroventricularly and intrathecally-administered Orexin A and B (hypocretin-1 and-2) in mice. Peptides. 2005;26(5):767–77.

    Article  CAS  PubMed  Google Scholar 

  181. Rainero I, Gallone S, Valfre W, Ferrero M, Angilella G, Rivoiro C, et al. A polymorphism of the hypocretin receptor 2 gene is associated with cluster headache. Neurology. 2004;63(7):1286–8.

    Article  CAS  PubMed  Google Scholar 

  182. Ozcan M, Ayar A, Serhatlioglu I, Alcin E, Sahin Z, Kelestimur HJPR. Orexins activates protein kinase C-mediated Ca (2+) signaling in isolated rat primary sensory neurons. Physiol Res. 2010;59(2):255–62.

    Article  CAS  PubMed  Google Scholar 

  183. Gerashchenko D, Horvath TL, Xie XS. Direct inhibition of hypocretin/orexin neurons in the lateral hypothalamus by nociceptin/orphanin FQ blocks stress-induced analgesia in rats. Neuropharmacology. 2011;60(4):543–9.

    Article  CAS  PubMed  Google Scholar 

  184. Dauvilliers Y, Bayard S, Shneerson JM, Plazzi G, Myers AJ, Garcia-Borreguero D. High pain frequency in narcolepsy with cataplexy. Sleep Med. 2011;12(6):572–7.

    Article  PubMed  Google Scholar 

  185. Razavi BM, Hosseinzadeh H. A review of the role of orexin system in pain modulation. Biomed Pharmacother. 2017;90:187–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

All the pictures in this chapter were prepared using Biorender premium software. The tables were redrawn using information from the reference article mentoned alongside them.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fathima, S., Murala, S., Bollu, P.C. (2022). Orexins. In: Bollu, P.C. (eds) Neurochemistry in Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-031-07897-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07897-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07896-5

  • Online ISBN: 978-3-031-07897-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics