Skip to main content

Eye Development in Drosophila : From Photoreceptor Specification to Terminal Differentiation

  • Chapter
  • First Online:
Neurogenetics

Part of the book series: Learning Materials in Biosciences ((LMB))

  • 673 Accesses

Abstract

This chapter highlights different steps of Drosophila compound eye development starting from early photoreceptor specification in the embryo to the terminal differentiation and determination of photoreceptor subtype specificity. In this chapter, “retinal determination cascade” is briefly described and it also provides details of how crosstalk of retinal determination genes at different levels regulates the eye developmental process. This chapter also highlights “morphogenetic furrow” initiation and progression in the eye-antennal imaginal disc and how that leads to the specification of different photoreceptor subtypes in the compound eye. It also provides details of photoreceptor terminal differentiation and how different ommatidial subtypes are determined and arranged in the compound eye.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. von Salvini-Plawen L, Mayr E. On the evolution of photorecptors and eyes. Plenum Press; 1977.

    Google Scholar 

  2. Quiring R, Walldorf U, Kloter U, Gehring WJ. Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science. 1994;265(5173):785–9.

    Article  CAS  Google Scholar 

  3. Hill RE, Favor J, Hogan BL, Ton CC, Saunders GF, Hanson IM, et al. Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature. 1991;354(6354):522–5.

    Article  CAS  Google Scholar 

  4. Ton CC, Hirvonen H, Miwa H, Weil MM, Monaghan P, Jordan T, et al. Positional cloning and characterization of a paired box- and homeobox-containing gene from the aniridia region. Cell. 1991;67(6):1059–74.

    Article  CAS  Google Scholar 

  5. Halder G, Callaerts P, Gehring WJ. Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science. 1995;267(5205):1788–92.

    Article  CAS  Google Scholar 

  6. Callaerts P, Munoz-Marmol AM, Glardon S, Castillo E, Sun H, Li WH, et al. Isolation and expression of a Pax-6 gene in the regenerating and intact Planarian Dugesia(G)tigrina. Proc Natl Acad Sci USA. 1999;96(2):558–63.

    Article  CAS  Google Scholar 

  7. Glardon S, Callaerts P, Halder G, Gehring WJ. Conservation of Pax-6 in a lower chordate, the ascidian Phallusia mammillata. Development. 1997;124(4):817–25.

    Article  CAS  Google Scholar 

  8. Glardon S, Holland LZ, Gehring WJ, Holland ND. Isolation and developmental expression of the amphioxus Pax-6 gene (AmphiPax-6): insights into eye and photoreceptor evolution. Development. 1998;125(14):2701–10.

    Article  CAS  Google Scholar 

  9. Halder G, Callaerts P, Gehring WJ. New perspectives on eye evolution. Curr Opin Genet Dev. 1995;5(5):602–9.

    Article  CAS  Google Scholar 

  10. Nishina S, Kohsaka S, Yamaguchi Y, Handa H, Kawakami A, Fujisawa H, et al. PAX6 expression in the developing human eye. Br J Ophthalmol. 1999;83(6):723–7.

    Article  CAS  Google Scholar 

  11. Onuma Y, Takahashi S, Asashima M, Kurata S, Gehring WJ. Conservation of Pax 6 function and upstream activation by Notch signaling in eye development of frogs and flies. Proc Natl Acad Sci USA. 2002;99(4):2020–5.

    Article  CAS  Google Scholar 

  12. Strickler AG, Yamamoto Y, Jeffery WR. Early and late changes in Pax6 expression accompany eye degeneration during cavefish development. Dev Genes Evol. 2001;211(3):138–44.

    Article  CAS  Google Scholar 

  13. Terzic J, Saraga-Babic M. Expression pattern of PAX3 and PAX6 genes during human embryogenesis. Int J Dev Biol. 1999;43(6):501–8.

    CAS  Google Scholar 

  14. Tomarev SI, Callaerts P, Kos L, Zinovieva R, Halder G, Gehring W, et al. Squid Pax-6 and eye development. Proc Natl Acad Sci USA. 1997;94(6):2421–6.

    Article  CAS  Google Scholar 

  15. Tsachaki M, Sprecher SG. Genetic and developmental mechanisms underlying the formation of the Drosophila compound eye. Dev Dyn. 2012;241(1):40–56.

    Article  Google Scholar 

  16. Kumar JP, Moses K. Expression of evolutionarily conserved eye specification genes during Drosophila embryogenesis. Dev Genes Evol. 2001;211(8–9):406–14.

    Article  CAS  Google Scholar 

  17. Treisman JE, Heberlein U. Eye development in Drosophila: formation of the eye field and control of differentiation. Curr Top Dev Biol. 1998;39:119–58.

    Article  CAS  Google Scholar 

  18. Ready DF, Hanson TE, Benzer S. Development of the Drosophila retina, a neurocrystalline lattice. Dev Biol. 1976;53(2):217–40.

    Article  CAS  Google Scholar 

  19. Hardie RC. Functional organization of the fly retina. Progress in sensory physiology. Springer. 1985:1–79.

    Google Scholar 

  20. O'Tousa JE, Baehr W, Martin RL, Hirsh J, Pak WL, Applebury ML. The Drosophila ninaE gene encodes an opsin. Cell. 1985;40(4):839–50.

    Article  CAS  Google Scholar 

  21. Zuker CS, Cowman AF, Rubin GM. Isolation and structure of a rhodopsin gene from D. melanogaster. Cell. 1985;40(4):851–8.

    Article  CAS  Google Scholar 

  22. Sprecher SG, Desplan C. Chapter 4 – Development of the Drosophila melanogaster eye: from precursor specification to terminal differentiation. In: Tsonis PA, editor. Animal models in eye research. London: Academic Press; 2008. p. 27–47.

    Chapter  Google Scholar 

  23. Gao S, Takemura SY, Ting CY, Huang S, Lu Z, Luan H, et al. The neural substrate of spectral preference in Drosophila. Neuron. 2008;60(2):328–42.

    Article  CAS  Google Scholar 

  24. Yamaguchi S, Desplan C, Heisenberg M. Contribution of photoreceptor subtypes to spectral wavelength preference in Drosophila. Proc Natl Acad Sci USA. 2010;107(12):5634–9.

    Article  CAS  Google Scholar 

  25. Wolff TRDF. Pattern formation in the Drosophila retina. The development of Drosophila melanogaster 1993:1277–1325.

    Google Scholar 

  26. Bonini NM, Leiserson WM, Benzer S. The eyes absent gene: genetic control of cell survival and differentiation in the developing Drosophila eye. Cell. 1993;72(3):379–95.

    Article  CAS  Google Scholar 

  27. Braid LR, Verheyen EM. Drosophila nemo promotes eye specification directed by the retinal determination gene network. Genetics. 2008;180(1):283–99.

    Article  Google Scholar 

  28. Curtiss J, Burnett M, Mlodzik M. Distal antenna and distal antenna-related function in the retinal determination network during eye development in Drosophila. Dev Biol. 2007;306(2):685–702.

    Article  CAS  Google Scholar 

  29. Mardon G, Solomon NM, Rubin GM. Dachshund encodes a nuclear protein required for normal eye and leg development in Drosophila. Development. 1994;120(12):3473–86.

    Article  CAS  Google Scholar 

  30. Serikaku MA, O’Tousa JE. Sine oculis is a homeobox gene required for Drosophila visual system development. Genetics. 1994;138(4):1137–50.

    Article  CAS  Google Scholar 

  31. Singh A, Kango-Singh M, Sun YH. Eye suppression, a novel function of teashirt, requires Wingless signaling. Development. 2002;129(18):4271–80.

    Article  CAS  Google Scholar 

  32. Haynie JL, Bryant PJ. Development of the eye-antenna imaginal disc and morphogenesis of the adult head in Drosophila melanogaster. J Exp Zool. 1986;237(3):293–308.

    Article  CAS  Google Scholar 

  33. Kumar JP, Moses K. EGF receptor and Notch signaling act upstream of Eyeless/Pax6 to control eye specification. Cell. 2001;104(5):687–97.

    Article  CAS  Google Scholar 

  34. Mishra AK, Sprecher SG. Early eye development: specification and determination. In:Molecular genetics of axial patterning, growth and disease in Drosophila eye. Springer; 2020. p. 1–52.

    Google Scholar 

  35. Hanson IM. Mammalian homologues of the Drosophila eye specification genes. Semin Cell Dev Biol. 2001;12(6):475–84.

    Article  CAS  Google Scholar 

  36. Aldaz S, Morata G, Azpiazu N. The Pax-homeobox gene eyegone is involved in the subdivision of the thorax of Drosophila. Development. 2003;130(18):4473–82.

    Article  CAS  Google Scholar 

  37. Cheyette BN, Green PJ, Martin K, Garren H, Hartenstein V, Zipursky SL. The Drosophila sine oculis locus encodes a homeodomain-containing protein required for the development of the entire visual system. Neuron. 1994;12(5):977–96.

    Article  CAS  Google Scholar 

  38. Choi KW, Benzer S. Rotation of photoreceptor clusters in the developing Drosophila eye requires the nemo gene. Cell. 1994;78(1):125–36.

    Article  CAS  Google Scholar 

  39. Czerny T, Halder G, Kloter U, Souabni A, Gehring WJ, Busslinger M. Twin of eyeless, a second Pax-6 gene of Drosophila, acts upstream of eyeless in the control of eye development. Mol Cell. 1999;3(3):297–307.

    Article  CAS  Google Scholar 

  40. Jun S, Wallen RV, Goriely A, Kalionis B, Desplan C. Lune/eye gone, a Pax-like protein, uses a partial paired domain and a homeodomain for DNA recognition. Proc Natl Acad Sci USA. 1998;95(23):13720–5.

    Article  CAS  Google Scholar 

  41. Laugier E, Yang Z, Fasano L, Kerridge S, Vola C. A critical role of teashirt for patterning the ventral epidermis is masked by ectopic expression of tiptop, a paralog of teashirt in Drosophila. Dev Biol. 2005;283(2):446–58.

    Article  CAS  Google Scholar 

  42. Pai CY, Kuo TS, Jaw TJ, Kurant E, Chen CT, Bessarab DA, et al. The Homothorax homeoprotein activates the nuclear localization of another homeoprotein, extradenticle, and suppresses eye development in Drosophila. Genes Dev. 1998;12(3):435–46.

    Article  CAS  Google Scholar 

  43. Pan D, Rubin GM. Targeted expression of teashirt induces ectopic eyes in Drosophila. Proc Natl Acad Sci USA. 1998;95(26):15508–12.

    Article  CAS  Google Scholar 

  44. Seimiya M, Gehring WJ. The Drosophila homeobox gene optix is capable of inducing ectopic eyes by an eyeless-independent mechanism. Development. 2000;127(9):1879–86.

    Article  CAS  Google Scholar 

  45. Kumar JP. The molecular circuitry governing retinal determination. Biochim Biophys Acta. 2009;1789(4):306–14.

    Article  CAS  Google Scholar 

  46. Kumar JP. Retinal determination the beginning of eye development. Curr Top Dev Biol. 2010;93:1–28.

    Article  Google Scholar 

  47. Baonza A, Freeman M. Control of Drosophila eye specification by Wingless signalling. Development. 2002;129(23):5313–22.

    Article  CAS  Google Scholar 

  48. Chen R, Halder G, Zhang Z, Mardon G. Signaling by the TGF-beta homolog decapentaplegic functions reiteratively within the network of genes controlling retinal cell fate determination in Drosophila. Development. 1999;126(5):935–43.

    Article  CAS  Google Scholar 

  49. Hsiao FC, Williams A, Davies EL, Rebay I. Eyes absent mediates cross-talk between retinal determination genes and the receptor tyrosine kinase signaling pathway. Dev Cell. 2001;1(1):51–61.

    Article  CAS  Google Scholar 

  50. Kurata S, Go MJ, Artavanis-Tsakonas S, Gehring WJ. Notch signaling and the determination of appendage identity. Proc Natl Acad Sci USA. 2000;97(5):2117–22.

    Article  CAS  Google Scholar 

  51. Treisman JE, Rubin GM. wingless inhibits morphogenetic furrow movement in the Drosophila eye disc. Development. 1995;121(11):3519–27.

    Article  CAS  Google Scholar 

  52. Bessa J, Carmona L, Casares F. Zinc-finger paralogues tsh and tio are functionally equivalent during imaginal development in Drosophila and maintain their expression levels through auto- and cross-negative feedback loops. Dev Dyn. 2009;238(1):19–28.

    Article  CAS  Google Scholar 

  53. Datta RR, Lurye JM, Kumar JP. Restriction of ectopic eye formation by Drosophila teashirt and tiptop to the developing antenna. Dev Dyn. 2009;238(9):2202–10.

    Article  Google Scholar 

  54. Dominguez M, Ferres-Marco D, Gutierrez-Avino FJ, Speicher SA, Beneyto M. Growth and specification of the eye are controlled independently by Eyegone and Eyeless in Drosophila melanogaster. Nat Genet. 2004;36(1):31–9.

    Article  CAS  Google Scholar 

  55. Tomlinson A, Ready DF. Neuronal differentiation in Drosophila ommatidium. Dev Biol. 1987;120(2):366–76.

    Article  CAS  Google Scholar 

  56. Wolff T, Ready DF. The beginning of pattern formation in the Drosophila compound eye: the morphogenetic furrow and the second mitotic wave. Development. 1991;113(3):841–50.

    Article  CAS  Google Scholar 

  57. Kumar JP. My what big eyes you have: how the Drosophila retina grows. Dev Neurobiol. 2011;71(12):1133–52.

    Article  CAS  Google Scholar 

  58. Bessa J, Gebelein B, Pichaud F, Casares F, Mann RS. Combinatorial control of Drosophila eye development by eyeless, homothorax, and teashirt. Genes Dev. 2002;16(18):2415–27.

    Article  CAS  Google Scholar 

  59. Pichaud F, Casares F. homothorax and iroquois-C genes are required for the establishment of territories within the developing eye disc. Mech Dev. 2000;96(1):15–25.

    Article  CAS  Google Scholar 

  60. Blochlinger K, Jan LY, Jan YN. Postembryonic patterns of expression of cut, a locus regulating sensory organ identity in Drosophila. Development. 1993;117(2):441–50.

    Article  CAS  Google Scholar 

  61. Lebovitz RM, Ready DF. Ommatidial development in Drosophila eye disc fragments. Dev Biol. 1986;117(2):663–71.

    Article  CAS  Google Scholar 

  62. Pignoni F, Hu B, Zavitz KH, Xiao J, Garrity PA, Zipursky SL. The eye-specification proteins So and Eya form a complex and regulate multiple steps in Drosophila eye development. Cell. 1997;91(7):881–91.

    Article  CAS  Google Scholar 

  63. Salzer CL, Kumar JP. Position dependent responses to discontinuities in the retinal determination network. Dev Biol. 2009;326(1):121–30.

    Article  CAS  Google Scholar 

  64. Horsfield J, Penton A, Secombe J, Hoffman FM, Richardson H. decapentaplegic is required for arrest in G1 phase during Drosophila eye development. Development. 1998;125(24):5069–78.

    Article  CAS  Google Scholar 

  65. Chanut F, Heberlein U. Role of decapentaplegic in initiation and progression of the morphogenetic furrow in the developing Drosophila retina. Development. 1997;124(2):559–67.

    Article  CAS  Google Scholar 

  66. Curtiss J, Mlodzik M. Morphogenetic furrow initiation and progression during eye development in Drosophila: the roles of decapentaplegic, hedgehog and eyes absent. Development. 2000;127(6):1325–36.

    Article  CAS  Google Scholar 

  67. Greenwood S, Struhl G. Progression of the morphogenetic furrow in the Drosophila eye: the roles of Hedgehog, Decapentaplegic and the Raf pathway. Development. 1999;126(24):5795–808.

    Article  CAS  Google Scholar 

  68. Kumar JP, Moses K. The EGF receptor and notch signaling pathways control the initiation of the morphogenetic furrow during Drosophila eye development. Development. 2001;128(14):2689–97.

    Article  CAS  Google Scholar 

  69. Ma C, Zhou Y, Beachy PA, Moses K. The segment polarity gene hedgehog is required for progression of the morphogenetic furrow in the developing Drosophila eye. Cell. 1993;75(5):927–38.

    Article  CAS  Google Scholar 

  70. Dominguez M, Hafen E. Hedgehog directly controls initiation and propagation of retinal differentiation in the Drosophila eye. Genes Dev. 1997;11(23):3254–64.

    Article  CAS  Google Scholar 

  71. Frankfort BJ, Mardon G. R8 development in the Drosophila eye: a paradigm for neural selection and differentiation. Development. 2002;129(6):1295–306.

    Article  CAS  Google Scholar 

  72. Hsiung F, Moses K. Retinal development in Drosophila: specifying the first neuron. Hum Mol Genet. 2002;11(10):1207–14.

    Article  CAS  Google Scholar 

  73. Dominguez M. Dual role for Hedgehog in the regulation of the proneural gene atonal during ommatidia development. Development. 1999;126(11):2345–53.

    Article  CAS  Google Scholar 

  74. Frankfort BJ, Nolo R, Zhang Z, Bellen H, Mardon G. senseless repression of rough is required for R8 photoreceptor differentiation in the developing Drosophila eye. Neuron. 2001;32(3):403–14.

    Article  CAS  Google Scholar 

  75. Freeman M. Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell. 1996;87(4):651–60.

    Article  CAS  Google Scholar 

  76. Freeman M. Cell determination strategies in the Drosophila eye. Development. 1997;124(2):261–70.

    Article  CAS  Google Scholar 

  77. Kumar JP, Tio M, Hsiung F, Akopyan S, Gabay L, Seger R, et al. Dissecting the roles of the Drosophila EGF receptor in eye development and MAP kinase activation. Development. 1998;125(19):3875–85.

    Article  CAS  Google Scholar 

  78. Yang L, Baker NE. Role of the EGFR/Ras/Raf pathway in specification of photoreceptor cells in the Drosophila retina. Development. 2001;128(7):1183–91.

    Article  CAS  Google Scholar 

  79. Tomlinson A, Kimmel BE, Rubin GM. Rough, a Drosophila homeobox gene required in photoreceptors R2 and R5 for inductive interactions in the developing eye. Cell. 1988;55(5):771–84.

    Article  CAS  Google Scholar 

  80. Kramer S, West SR, Hiromi Y. Cell fate control in the Drosophila retina by the orphan receptor seven-up: its role in the decisions mediated by the ras signaling pathway. Development. 1995;121(5):1361–72.

    Article  CAS  Google Scholar 

  81. Dickson B, Hafen E. The development of Drosophila 1993.

    Google Scholar 

  82. Heberlein U, Mlodzik M, Rubin GM. Cell-fate determination in the developing Drosophila eye: role of the rough gene. Development. 1991;112(3):703–12.

    Article  CAS  Google Scholar 

  83. Mlodzik M, Hiromi Y, Weber U, Goodman CS, Rubin GM. The Drosophila seven-up gene, a member of the steroid receptor gene superfamily, controls photoreceptor cell fates. Cell. 1990;60(2):211–24.

    Article  CAS  Google Scholar 

  84. Domingos PM, Mlodzik M, Mendes CS, Brown S, Steller H, Mollereau B. Spalt transcription factors are required for R3/R4 specification and establishment of planar cell polarity in the Drosophila eye. Development. 2004;131(22):5695–702.

    Article  CAS  Google Scholar 

  85. Daga A, Karlovich CA, Dumstrei K, Banerjee U. Patterning of cells in the Drosophila eye by Lozenge, which shares homologous domains with AML1. Genes Dev. 1996;10(10):1194–205.

    Article  CAS  Google Scholar 

  86. Higashijima S, Kojima T, Michiue T, Ishimaru S, Emori Y, Saigo K. Dual Bar homeo box genes of Drosophila required in two photoreceptor cells, R1 and R6, and primary pigment cells for normal eye development. Genes Dev. 1992;6(1):50–60.

    Article  CAS  Google Scholar 

  87. Tomlinson A, Bowtell DD, Hafen E, Rubin GM. Localization of the sevenless protein, a putative receptor for positional information, in the eye imaginal disc of Drosophila. Cell. 1987;51(1):143–50.

    Article  CAS  Google Scholar 

  88. Basler K, Christen B, Hafen E. Ligand-independent activation of the sevenless receptor tyrosine kinase changes the fate of cells in the developing Drosophila eye. Cell. 1991;64(6):1069–81.

    Article  CAS  Google Scholar 

  89. Begemann G, Michon AM, vd Voorn L, Wepf R, Mlodzik M. The Drosophila orphan nuclear receptor seven-up requires the Ras pathway for its function in photoreceptor determination. Development. 1995;121(1):225–35.

    Article  CAS  Google Scholar 

  90. Hiromi Y, Mlodzik M, West SR, Rubin GM, Goodman CS. Ectopic expression of seven-up causes cell fate changes during ommatidial assembly. Development. 1993;118(4):1123–35.

    Article  CAS  Google Scholar 

  91. Cooper MT, Bray SJ. Frizzled regulation of Notch signalling polarizes cell fate in the Drosophila eye. Nature. 1999;397(6719):526–30.

    Article  CAS  Google Scholar 

  92. Tomlinson A, Struhl G. Delta/Notch and Boss/Sevenless signals act combinatorially to specify the Drosophila R7 photoreceptor. Mol Cell. 2001;7(3):487–95.

    Article  CAS  Google Scholar 

  93. Cook T, Pichaud F, Sonneville R, Papatsenko D, Desplan C. Distinction between color photoreceptor cell fates is controlled by Prospero in Drosophila. Dev Cell. 2003;4(6):853–64.

    Article  CAS  Google Scholar 

  94. Kauffmann RC, Li S, Gallagher PA, Zhang J, Carthew RW. Ras1 signaling and transcriptional competence in the R7 cell of Drosophila. Genes Dev. 1996;10(17):2167–78.

    Article  CAS  Google Scholar 

  95. Kumar JP, Ready DF. Rhodopsin plays an essential structural role in Drosophila photoreceptor development. Development. 1995;121(12):4359–70.

    Article  CAS  Google Scholar 

  96. Hardie RC, Raghu P. Visual transduction in Drosophila. Nature. 2001;413(6852):186–93.

    Article  CAS  Google Scholar 

  97. Campos AR, Fischbach KF, Steller H. Survival of photoreceptor neurons in the compound eye of Drosophila depends on connections with the optic ganglia. Development. 1992;114(2):355–66.

    Article  CAS  Google Scholar 

  98. Chang HY, Ready DF. Rescue of photoreceptor degeneration in rhodopsin-null Drosophila mutants by activated Rac1. Science. 2000;290(5498):1978–80.

    Article  CAS  Google Scholar 

  99. Kirschfeld K, Franceschini N. Photostable pigments within the membrane of photoreceptors and their possible role. Biophys Struct Mech. 1977;3(2):191–4.

    Article  CAS  Google Scholar 

  100. Morante J, Desplan C. Building a projection map for photoreceptor neurons in the Drosophila optic lobes. Semin Cell Dev Biol. 2004;15(1):137–43.

    Article  Google Scholar 

  101. Mikeladze-Dvali T, Desplan C, Pistillo D. Flipping coins in the fly retina. Curr Top Dev Biol. 2005;69:1–15.

    Article  CAS  Google Scholar 

  102. Wernet MF, Desplan C. Building a retinal mosaic: cell-fate decision in the fly eye. Trends Cell Biol. 2004;14(10):576–84.

    Article  CAS  Google Scholar 

  103. Fortini ME, Rubin GM. The optic lobe projection pattern of polarization-sensitive photoreceptor cells in Drosophila melanogaster. Cell Tissue Res. 1991;265(1):185–91.

    Article  CAS  Google Scholar 

  104. Mollereau B, Dominguez M, Webel R, Colley NJ, Keung B, de Celis JF, et al. Two-step process for photoreceptor formation in Drosophila. Nature. 2001;412(6850):911–3.

    Article  CAS  Google Scholar 

  105. Wernet MF, Mazzoni EO, Celik A, Duncan DM, Duncan I, Desplan C. Stochastic spineless expression creates the retinal mosaic for colour vision. Nature. 2006;440(7081):174–80.

    Article  CAS  Google Scholar 

  106. Mikeladze-Dvali T, Wernet MF, Pistillo D, Mazzoni EO, Teleman AA, Chen YW, et al. The growth regulators warts/lats and melted interact in a bistable loop to specify opposite fates in Drosophila R8 photoreceptors. Cell. 2005;122(5):775–87.

    Article  CAS  Google Scholar 

  107. Vandendries ER, Johnson D, Reinke R. orthodenticle is required for photoreceptor cell development in the Drosophila eye. Dev Biol. 1996;173(1):243–55.

    Article  CAS  Google Scholar 

  108. Tahayato A, Sonneville R, Pichaud F, Wernet MF, Papatsenko D, Beaufils P, et al. Otd/Crx, a dual regulator for the specification of ommatidia subtypes in the Drosophila retina. Dev Cell. 2003;5(3):391–402.

    Article  CAS  Google Scholar 

  109. Tomlinson A. Patterning the peripheral retina of the fly: decoding a gradient. Dev Cell. 2003;5(5):799–809.

    Article  CAS  Google Scholar 

  110. Wernet MF, Labhart T, Baumann F, Mazzoni EO, Pichaud F, Desplan C. Homothorax switches function of Drosophila photoreceptors from color to polarized light sensors. Cell. 2003;115(3):267–79.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon G. Sprecher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, A.K., Sprecher, S.G. (2023). Eye Development in Drosophila : From Photoreceptor Specification to Terminal Differentiation. In: Egger, B. (eds) Neurogenetics . Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-031-07793-7_6

Download citation

Publish with us

Policies and ethics