Skip to main content

Regionalization of the Early Nervous System

  • Chapter
  • First Online:
Neurogenetics

Part of the book series: Learning Materials in Biosciences ((LMB))

  • 605 Accesses

Abstract

In this chapter, we focus on observations that were made in the field of comparative nervous system development by studies carried out in Drosophila and in vertebrate model systems. We will first look at homologous genes that are expressed along the dorsoventral body axis during early neural induction and patterning. Secondly, we discuss findings about the expression and functions of genes involved in anteroposterior patterning of the central nervous system. Despite the significant morphological and developmental differences between insects and vertebrates, there is astonishing conservation between the genetic and molecular mechanisms that control the regionalization of the nervous system. Hence, the data imply that comparable mechanisms operate during embryonic brain development in protostome and deuterostome lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arendt D, Nübler-Jung K. Inversion of dorsoventral axis? Nature. 1994;371(6492):26.

    Article  CAS  Google Scholar 

  2. Holley SA, Jackson PD, Sasai Y, Lu B, De Robertis EM, Hoffmann FM, et al. A conserved system for dorsal-ventral patterning in insects and vertebrates involving sog and chordin. Nature. 1995;376(6537):249–53.

    Article  CAS  Google Scholar 

  3. Schmidt J, Francois V, Bier E, Kimelman D. Drosophila short gastrulation induces an ectopic axis in Xenopus: evidence for conserved mechanisms of dorsal-ventral patterning. Development. 1995;121(12):4319–28.

    Article  CAS  Google Scholar 

  4. Therianos S, Leuzinger S, Hirth F, Goodman CS, Reichert H. Embryonic development of the Drosophila brain: formation of commissural and descending pathways. Development. 1995;121(11):3849–60.

    Article  CAS  Google Scholar 

  5. Rubenstein JL, Martinez S, Shimamura K, Puelles L. The embryonic vertebrate forebrain: the prosomeric model. Science. 1994;266(5185):578–80.

    Article  CAS  Google Scholar 

  6. Lumsden A, Krumlauf R. Patterning the vertebrate neuraxis. Science. 1996;274(5290):1109–15.

    Article  CAS  Google Scholar 

  7. Nassif C, Noveen A, Hartenstein V. Embryonic development of the Drosophila brain. I. Pattern of pioneer tracts. J Comp Neurol. 1998;402(1):10–31.

    Article  CAS  Google Scholar 

  8. Younossi-Hartenstein A, Nassif C, Green P, Hartenstein V. Early neurogenesis of the Drosophila brain. J Comp Neurol. 1996;370(3):313–29.

    Article  CAS  Google Scholar 

  9. Beddington RS, Robertson EJ. Anterior patterning in mouse. Trends Genet. 1998;14(7):277–84.

    Article  CAS  Google Scholar 

  10. Lumsden A. The cellular basis of segmentation in the developing hindbrain. Trends Neurosci. 1990;13(8):329–35.

    Article  CAS  Google Scholar 

  11. Rubenstein JL, Shimamura K, Martinez S, Puelles L. Regionalization of the prosencephalic neural plate. Annu Rev Neurosci. 1998;21:445–77.

    Article  CAS  Google Scholar 

  12. Bier E. Anti-neural-inhibition: a conserved mechanism for neural induction. Cell. 1997;89(5):681–4.

    Article  CAS  Google Scholar 

  13. Ferguson EL. Conservation of dorsal-ventral patterning in arthropods and chordates. Curr Opin Genet Dev. 1996;6(4):424–31.

    Article  CAS  Google Scholar 

  14. Sasai Y, De Robertis EM. Ectodermal patterning in vertebrate embryos. Dev Biol. 1997;182(1):5–20.

    Article  CAS  Google Scholar 

  15. Cornell RA, Von Ohlen T. vnd/Nkx, ind/Gsh, and msh/Msx: conserved regulators of dorsoventral neural patterning? Curr Opin Neurobiol. 2000;10(1):63–71.

    Article  CAS  Google Scholar 

  16. Stathopoulos A, Levine M. Dorsal gradient networks in the Drosophila embryo. Dev Biol. 2002;246(1):57–67.

    Article  CAS  Google Scholar 

  17. Wharton KA, Ray RP, Gelbart WM. An activity gradient of decapentaplegic is necessary for the specification of dorsal pattern elements in the Drosophila embryo. Development. 1993;117(2):807–22.

    Article  CAS  Google Scholar 

  18. Ferguson EL, Anderson KV. Decapentaplegic acts as a morphogen to organize dorsal-ventral pattern in the Drosophila embryo. Cell. 1992;71(3):451–61.

    Article  CAS  Google Scholar 

  19. Francois V, Solloway M, O'Neill JW, Emery J, Bier E. Dorsal-ventral patterning of the Drosophila embryo depends on a putative negative growth factor encoded by the short gastrulation gene. Genes Dev. 1994;8(21):2602–16.

    Article  CAS  Google Scholar 

  20. Biehs B, Francois V, Bier E. The Drosophila short gastrulation gene prevents Dpp from autoactivating and suppressing neurogenesis in the neuroectoderm. Genes Dev. 1996;10(22):2922–34.

    Article  CAS  Google Scholar 

  21. Suzuki A, Shioda N, Ueno N. Bone morphogenetic protein acts as a ventral mesoderm modifier in early Xenopus embryos. Develop Growth Differ. 1995;37:581–8.

    Article  CAS  Google Scholar 

  22. Hawley SH, Wunnenberg-Stapleton K, Hashimoto C, Laurent MN, Watabe T, Blumberg BW, et al. Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction. Genes Dev. 1995;9(23):2923–35.

    Article  CAS  Google Scholar 

  23. Xu RH, Kim J, Taira M, Zhan S, Sredni D, Kung HF. A dominant negative bone morphogenetic protein 4 receptor causes neuralization in Xenopus ectoderm. Biochem Biophys Res Commun. 1995;212(1):212–9.

    Article  CAS  Google Scholar 

  24. Wilson PA, Hemmati-Brivanlou A. Vertebrate neural induction: inducers, inhibitors, and a new synthesis. Neuron. 1997;18(5):699–710.

    Article  CAS  Google Scholar 

  25. Hemmati-Brivanlou A, Melton D. Vertebrate neural induction. Annu Rev Neurosci. 1997;20:43–60.

    Article  CAS  Google Scholar 

  26. Bally-Cuif L, Hammerschmidt M. Induction and patterning of neuronal development, and its connection to cell cycle control. Curr Opin Neurobiol. 2003;13(1):16–25.

    Article  CAS  Google Scholar 

  27. Thomsen GH. Antagonism within and around the organizer: BMP inhibitors in vertebrate body patterning. Trends Genet. 1997;13(6):209–11.

    Article  CAS  Google Scholar 

  28. Oelgeschlager M, Kuroda H, Reversade B, De Robertis EM. Chordin is required for the Spemann organizer transplantation phenomenon in Xenopus embryos. Develomental Cell. 2003;4(2):219–30.

    Article  CAS  Google Scholar 

  29. Piccolo S, Sasai Y, Lu B, De Robertis EM. Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell. 1996;86(4):589–98.

    Article  CAS  Google Scholar 

  30. Udolph G, Urban J, Rusing G, Luer K, Technau GM. Differential effects of EGF receptor signalling on neuroblast lineages along the dorsoventral axis of the Drosophila CNS. Development. 1998;125(17):3291–9.

    Article  CAS  Google Scholar 

  31. Von Ohlen T, Doe CQ. Convergence of dorsal, dpp, and Egfr signaling pathways subdivides the Drosophila neuroectoderm into three dorsal-ventral columns. Dev Biol. 2000;224(2):362–72.

    Article  Google Scholar 

  32. Marti E, Bovolenta P. Sonic hedgehog in CNS development: one signal, multiple outputs. Trends Neurosci. 2002;25(2):89–96.

    Article  CAS  Google Scholar 

  33. Sasai Y. Regulation of neural determination by evolutionarily conserved signals: anti-BMP factors and what next? Curr Opin Neurobiol. 2001;11(1):22–6.

    Article  CAS  Google Scholar 

  34. Markstein M, Markstein P, Markstein V, Levine MS. Genome-wide analysis of clustered Dorsal binding sites identifies putative target genes in the Drosophila embryo. Proc Natl Acad Sci USA. 2002;99(2):763–8.

    Article  CAS  Google Scholar 

  35. Stathopoulos A, Van Drenth M, Erives A, Markstein M, Levine M. Whole-genome analysis of dorsal-ventral patterning in the Drosophila embryo. Cell. 2002;111(5):687–701.

    Article  CAS  Google Scholar 

  36. Markstein M, Levine M. Decoding cis-regulatory DNAs in the Drosophila genome. Curr Opin Genet Dev. 2002;12(5):601–6.

    Article  CAS  Google Scholar 

  37. Gao Q, Wang Y, Finkelstein R. Orthodenticle regulation during embryonic head development in Drosophila. Mech Dev. 1996;56(1–2):3–15.

    Article  CAS  Google Scholar 

  38. Cohen SM, Jürgens G. Mediation of Drosophila head development by gap-like segmentation genes. Nature. 1990;346(6283):482–5.

    Article  CAS  Google Scholar 

  39. Finkelstein R, Smouse D, Capaci TM, Spradling AC, Perrimon N. The orthodenticle gene encodes a novel homeo domain protein involved in the development of the Drosophila nervous system and ocellar visual structures. Genes Dev. 1990;4(9):1516–27.

    Article  CAS  Google Scholar 

  40. Hirth F, Therianos S, Loop T, Gehring WJ, Reichert H, Furukubo-Tokunaga K. Developmental defects in brain segmentation caused by mutations of the homeobox genes orthodenticle and empty spiracles in Drosophila. Neuron. 1995;15(4):769–78.

    Article  CAS  Google Scholar 

  41. Simeone A, Acampora D, Gulisano M, Stornaiuolo A, Boncinelli E. Nested expression domains of four homeobox genes in developing rostral brain. Nature. 1992;358(6388):687–90.

    Article  CAS  Google Scholar 

  42. Hirth F, Hartmann B, Reichert H. Homeotic gene action in embryonic brain development of Drosophila. Development. 1998;125(9):1579–89.

    Article  CAS  Google Scholar 

  43. Keynes R, Krumlauf R. Hox genes and regionalization of the nervous system. Annu Rev Neurosci. 1994;17:109–32.

    Article  CAS  Google Scholar 

  44. Younossi-Hartenstein A, Green P, Liaw GJ, Rudolph K, Lengyel J, Hartenstein V. Control of early neurogenesis of the Drosophila brain by the head gap genes tll, otd, ems, and btd. Dev Biol. 1997;182(2):270–83.

    Article  CAS  Google Scholar 

  45. Wieschaus E, Perrimon N, Finkelstein R. orthodenticle activity is required for the development of medial structures in the larval and adult epidermis of Drosophila. Development. 1992;115(3):801–11.

    Article  CAS  Google Scholar 

  46. Klämbt C, Jacobs JR, Goodman CS. The midline of the Drosophila central nervous system: a model for the genetic analysis of cell fate, cell migration, and growth cone guidance. Cell. 1991;64(4):801–15.

    Article  Google Scholar 

  47. Leuzinger S, Hirth F, Gerlich D, Acampora D, Simeone A, Gehring WJ, et al. Equivalence of the fly orthodenticle gene and the human OTX genes in embryonic brain development of Drosophila. Development. 1998;125(9):1703–10.

    Article  CAS  Google Scholar 

  48. Acampora D, Gulisano M, Broccoli V, Simeone A. Otx genes in brain morphogenesis. Prog Neurobiol. 2001;64(1):69–95.

    Article  CAS  Google Scholar 

  49. Stern CD. Initial patterning of the central nervous system: how many organizers? Nat Rev Neurosci. 2001;2(2):92–8.

    Article  CAS  Google Scholar 

  50. Ang SL, Jin O, Rhinn M, Daigle N, Stevenson L, Rossant J. A targeted mouse Otx2 mutation leads to severe defects in gastrulation and formation of axial mesoderm and to deletion of rostral brain. Development. 1996;122(1):243–52.

    Article  CAS  Google Scholar 

  51. Matsuo I, Kuratani S, Kimura C, Takeda N, Aizawa S. Mouse Otx2 functions in the formation and patterning of rostral head. Genes Dev. 1995;9(21):2646–58.

    Article  CAS  Google Scholar 

  52. Acampora D, Mazan S, Lallemand Y, Avantaggiato V, Maury M, Simeone A, et al. Forebrain and midbrain regions are deleted in Otx2−/− mutants due to a defective anterior neuroectoderm specification during gastrulation. Development. 1995;121(10):3279–90.

    Article  CAS  Google Scholar 

  53. Frantz GD, Weimann JM, Levin ME, McConnell SK. Otx1 and Otx2 define layers and regions in developing cerebral cortex and cerebellum. J Neurosci. 1994;14(10):5725–40.

    Article  CAS  Google Scholar 

  54. Simeone A, Acampora D, Mallamaci A, Stornaiuolo A, D’Apice MR, Nigro V, et al. A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo. EMBO J. 1993;12(7):2735–47.

    Article  CAS  Google Scholar 

  55. Acampora D, Mazan S, Avantaggiato V, Barone P, Tuorto F, Lallemand Y, et al. Epilepsy and brain abnormalities in mice lacking the Otx1 gene. Nat Genet. 1996;14(2):218–22.

    Article  CAS  Google Scholar 

  56. Acampora D, Avantaggiato V, Tuorto F, Briata P, Corte G, Simeone A. Visceral endoderm-restricted translation of Otx1 mediates recovery of Otx2 requirements for specification of anterior neural plate and normal gastrulation. Development. 1998;125(24):5091–104.

    Article  CAS  Google Scholar 

  57. Pilo Boyl P, Signore M, Acampora D, Martinez-Barbera JP, Ilengo C, Annino A, et al. Forebrain and midbrain development requires epiblast-restricted Otx2 translational control mediated by its 3' UTR. Development. 2001;128(15):2989–3000.

    Article  Google Scholar 

  58. Dalton D, Chadwick R, McGinnis W. Expression and embryonic function of empty spiracles: a Drosophila homeo box gene with two patterning functions on the anterior-posterior axis of the embryo. Genes Dev. 1989;3(12A):1940–56.

    Article  CAS  Google Scholar 

  59. Walldorf U, Gehring WJ. empty spiracles, a gap gene containing a homeobox involved in Drosophila head development. EMBO J. 1992;11(6):2247–59.

    Article  CAS  Google Scholar 

  60. Hartmann B, Hirth F, Walldorf U, Reichert H. Expression, regulation and function of the homeobox gene empty spiracles in brain and ventral nerve cord development of Drosophila. Mech Dev. 2000;90(2):143–53.

    Article  CAS  Google Scholar 

  61. Cecchi C, Boncinelli E. Emx homeogenes and mouse brain development. Trends Neurosci. 2000;23(8):347–52.

    Article  CAS  Google Scholar 

  62. Cecchi C. Emx2: a gene responsible for cortical development, regionalization and area specification. Gene. 2002;291(1–2):1–9.

    Article  CAS  Google Scholar 

  63. Simeone A, Gulisano M, Acampora D, Stornaiuolo A, Rambaldi M, Boncinelli E. Two vertebrate homeobox genes related to the Drosophila empty spiracles gene are expressed in the embryonic cerebral cortex. EMBO J. 1992;11(7):2541–50.

    Article  CAS  Google Scholar 

  64. Gulisano M, Broccoli V, Pardini C, Boncinelli E. Emx1 and Emx2 show different patterns of expression during proliferation and differentiation of the developing cerebral cortex in the mouse. Eur J Neurosci. 1996;8(5):1037–50.

    Article  CAS  Google Scholar 

  65. Yoshida M, Suda Y, Matsuo I, Miyamoto N, Takeda N, Kuratani S, et al. Emx1 and Emx2 functions in development of dorsal telencephalon. Development. 1997;124(1):101–11.

    Article  CAS  Google Scholar 

  66. Mallamaci A, Mercurio S, Muzio L, Cecchi C, Pardini CL, Gruss P, et al. The lack of Emx2 causes impairment of Reelin signaling and defects of neuronal migration in the developing cerebral cortex. J Neurosci. 2000;20(3):1109–18.

    Article  CAS  Google Scholar 

  67. Galli R, Fiocco R, De Filippis L, Muzio L, Gritti A, Mercurio S, et al. Emx2 regulates the proliferation of stem cells of the adult mammalian central nervous system. Development. 2002;129(7):1633–44.

    Article  CAS  Google Scholar 

  68. Gangemi RM, Daga A, Marubbi D, Rosatto N, Capra MC, Corte G. Emx2 in adult neural precursor cells. Mech Dev. 2001;109(2):323–9.

    Article  CAS  Google Scholar 

  69. Heins N, Cremisi F, Malatesta P, Gangemi RM, Corte G, Price J, et al. Emx2 promotes symmetric cell divisions and a multipotential fate in precursors from the cerebral cortex. Mol Cell Neurosci. 2001;18(5):485–502.

    Article  CAS  Google Scholar 

  70. Adachi Y, Nagao T, Saiga H, Furukubo-Tokunaga K. Cross-phylum regulatory potential of the ascidian Otx gene in brain development in Drosophila melanogaster. Dev Genes Evol. 2001;211(6):269–80.

    Article  CAS  Google Scholar 

  71. Acampora D, Pilo Boyl P, Signore M, Martinez-Barbera JP, Ilengo C, Puelles E, et al. OTD/OTX2 functional equivalence depends on 5′ and 3' UTR-mediated control of Otx2 mRNA for nucleo-cytoplasmic export and epiblast-restricted translation. Development. 2001;128(23):4801–13.

    Article  CAS  Google Scholar 

  72. McGinnis W, Krumlauf R. Homeobox genes and axial patterning. Cell. 1992;68(2):283–302.

    Article  CAS  Google Scholar 

  73. Duboule D, Morata G. Colinearity and functional hierarchy among genes of the homeotic complexes. Trends Genet. 1994;10(10):358–64.

    Article  CAS  Google Scholar 

  74. Akam M. Hox and HOM: homologous gene clusters in insects and vertebrates. Cell. 1989;57(3):347–9.

    Article  CAS  Google Scholar 

  75. Trainor PA, Krumlauf R. Patterning the cranial neural crest: hindbrain segmentation and Hox gene plasticity. Nat Rev Neurosci. 2000;1(2):116–24.

    Article  CAS  Google Scholar 

  76. Studer M, Lumsden A, Ariza-McNaughton L, Bradley A, Krumlauf R. Altered segmental identity and abnormal migration of motor neurons in mice lacking Hoxb-1. Nature. 1996;384(6610):630–4.

    Article  CAS  Google Scholar 

  77. Gavalas A, Studer M, Lumsden A, Rijli FM, Krumlauf R, Chambon P. Hoxa1 and Hoxb1 synergize in patterning the hindbrain, cranial nerves and second pharyngeal arch. Development. 1998;125(6):1123–36.

    Article  CAS  Google Scholar 

  78. Studer M, Gavalas A, Marshall H, Ariza-McNaughton L, Rijli FM, Chambon P, et al. Genetic interactions between Hoxa1 and Hoxb1 reveal new roles in regulation of early hindbrain patterning. Development. 1998;125(6):1025–36.

    Article  CAS  Google Scholar 

  79. Wurst W, Bally-Cuif L. Neural plate patterning: upstream and downstream of the isthmic organizer. Nat Rev Neurosci. 2001;2(2):99–108.

    Article  CAS  Google Scholar 

  80. Rhinn M, Brand M. The midbrain--hindbrain boundary organizer. Curr Opin Neurobiol 2001;11(1):34–42.

    Google Scholar 

  81. Liu A, Joyner AL. Early anterior/posterior patterning of the midbrain and cerebellum. Annu Rev Neurosci. 2001;24:869–96.

    Article  CAS  Google Scholar 

  82. Joyner AL, Liu A, Millet S. Otx2, Gbx2 and Fgf8 interact to position and maintain a mid-hindbrain organizer. Curr Opin Cell Biol. 2000;12(6):736–41.

    Article  CAS  Google Scholar 

  83. Simeone A. Positioning the isthmic organizer where Otx2 and Gbx2 meet. Trends Genet. 2000;16(6):237–40.

    Article  CAS  Google Scholar 

  84. Hirth F, Kammermeier L, Frei E, Walldorf U, Noll M, Reichert H. An urbilaterian origin of the tripartite brain: developmental genetic insights from Drosophila. Development. 2003;130(11):2365–73.

    Article  CAS  Google Scholar 

  85. Noll M. Evolution and role of Pax genes. Curr Opin Genet Dev. 1993;3(4):595–605.

    Article  CAS  Google Scholar 

  86. Chiang C, Young KE, Beachy PA. Control of Drosophila tracheal branching by the novel homeodomain gene unplugged, a regulatory target for genes of the bithorax complex. Development. 1995;121(11):3901–12.

    Article  CAS  Google Scholar 

  87. Erwin DH, Davidson EH. The last common bilaterian ancestor. Development. 2002;129(13):3021–32.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

I am grateful to Professor Dr. Heinrich Reichert (*1949, †2019) for his advice and discussions toward this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Egger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Egger, B. (2023). Regionalization of the Early Nervous System. In: Egger, B. (eds) Neurogenetics . Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-031-07793-7_3

Download citation

Publish with us

Policies and ethics