Skip to main content

HPC Finite Element Solvers for Phase-Field Models for Fracture in Solids

  • Conference paper
  • First Online:
Numerical Modeling Strategies for Sustainable Concrete Structures (SSCS 2022)

Abstract

Finite element approximations of phase-field models for fracture are often used to simulate cracking processes in solids and structures. However, non-linearity, the requirement of extremely fine meshing, and/or large-scale simulations make numerical crack prediction a tedious task with this family of models. Such problems demand enormous computational resources. Under a sequential computing framework, these lead to extremely slow computations with non-feasible computer processing times. As a remedy, domain decomposition approaches that facilitate parallel computing can subdue these issues and significantly decrease computational time and memory. This contribution discusses and compares two ways of setting up domain decomposition for phase-field models under a distributed computing framework. Notably, in the context of parallel computing, a monolithic strategy set up via the vectorial finite elements is compared to a staggered finite element strategy for a hybrid phase-field model. A detailed comparison of performance, scalability, and efficiency on thousands of parallel processors is established for a large-scale fracture mechanics problem with millions of unknowns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Intel Xeon 8168@2.7 GHz with 48 cores per node.

  2. 2.

    Setup in PETSc with -ksp_type cg -pc_type bjacobi -sub_pc_type icc.

  3. 3.

    Within the limit of 10,000 iterations and standard relative residual tolerance of \(10^{-8}\).

References

  1. Ambati, M., Gerasimov, T., De Lorenzis, L.: Phase-field modeling of ductile fracture. Comput. Mech. 55(5), 1017–1040 (2015). https://doi.org/10.1007/s00466-015-1151-4

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambati, M., Gerasimov, T., De Lorenzis, L.: A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput. Mech. 55(2), 383–405 (2014). https://doi.org/10.1007/s00466-014-1109-y

    Article  MathSciNet  MATH  Google Scholar 

  3. Amor, H., Marigo, J.J., Maurini, C.: Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J. Mech. Phys. Solids 57(8), 1209–1229 (2009)

    Article  Google Scholar 

  4. Badri, M., Rastiello, G., Foerster, E.: Preconditioning strategies for vectorial finite element linear systems arising from phase-field models for fracture mechanics. Comput. Methods Appl. Mech. Eng. 373, 113472 (2021)

    Google Scholar 

  5. Balay, S., et al.: PETSc web page (2017). http://www.mcs.anl.gov/petsc

  6. Bilgen, C., Kopaničáková, A., Krause, R., Weinberg, K.: A phase-field approach to conchoidal fracture. Meccanica 53(6), 1203–1219 (2017). https://doi.org/10.1007/s11012-017-0740-z

    Article  MathSciNet  MATH  Google Scholar 

  7. Borden, M.J., Verhoosel, C.V., Scott, M.A., Hughes, T.J., Landis, C.M.: A phase-field description of dynamic brittle fracture. Comput. Methods Appl. Mech. Eng. 217, 77–95 (2012)

    Article  MathSciNet  Google Scholar 

  8. Bourdin, B., Francfort, G., Marigo, J.J.: Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48(4), 797–826 (2000)

    Article  MathSciNet  Google Scholar 

  9. CEA-EDF: SALOME Platform - the open-source platform for numerical simulation (2022). https://www.salome-platform.org

  10. Francfort, G.A., Marigo, J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46(8), 1319–1342 (1998)

    Article  MathSciNet  Google Scholar 

  11. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–266 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Hibbitt, H., Karlsson, B., Sorensen, E.: ABAQUS-EPGEN: a general-purpose finite element code. Volume 1 (Revision 2). User’s manual. Technical report, Hibbitt, Karlsson and Sorensen, Providence, RI, USA (1984)

    Google Scholar 

  13. Jodlbauer, D., Langer, U., Wick, T.: Matrix-free multigrid solvers for phase-field fracture problems. arXiv e-prints 54, February 2019

    Google Scholar 

  14. Karypis, G., Schloegel, K., Kumar, V.: ParMETIS: parallel graph partitioning and sparse matrix ordering library. Version 1.0, Department of Computer Science, University of Minnesota, p. 22 (1997)

    Google Scholar 

  15. Liu, G., Li, Q., Msekh, M.A., Zuo, Z.: Abaqus implementation of monolithic and staggered schemes for quasi-static and dynamic fracture phase-field model. Comput. Mater. Sci. 121, 35–47 (2016)

    Article  Google Scholar 

  16. Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int. J. Numer. Meth. Eng. 83(10), 1273–1311 (2010)

    Article  MathSciNet  Google Scholar 

  17. Miehe, C., Schänzel, L.M.: Phase field modeling of fracture in rubbery polymers. Part I: Finite elasticity coupled with brittle failure. J. Mech. Phys. Solids 65, 93–113 (2014)

    Article  MathSciNet  Google Scholar 

  18. Nguyen, T.T., et al.: On the choice of parameters in the phase field method for simulating crack initiation with experimental validation. Int. J. Fract. 197(2), 213–226 (2016). https://doi.org/10.1007/s10704-016-0082-1

  19. Pham, K.H., Ravi-Chandar, K., Landis, C.M.: Experimental validation of a phase-field model for fracture. Int. J. Fract. 205(1), 83–101 (2017). https://doi.org/10.1007/s10704-017-0185-3

    Article  Google Scholar 

  20. Schroeder, W., Martin, K.M., Lorensen, W.E.: The Visualization Toolkit an Object-Oriented Approach to 3D Graphics. Prentice-Hall, Inc., Upper Saddle River (1998)

    Google Scholar 

  21. Verhoosel, C.V., de Borst, R.: A phase-field model for cohesive fracture. Int. J. Numer. Meth. Eng. 96(1), 43–62 (2013)

    Article  MathSciNet  Google Scholar 

  22. Wu, J.Y.: A unified phase-field theory for the mechanics of damage and quasi-brittle failure. J. Mech. Phys. Solids 103, 72–99 (2017)

    Article  MathSciNet  Google Scholar 

  23. Wu, J.Y., Nguyen, V.P.: A length scale insensitive phase-field damage model for brittle fracture. J. Mech. Phys. Solids 119, 20–42 (2018)

    Article  MathSciNet  Google Scholar 

  24. Ziaei-Rad, V., Shen, Y.: Massive parallelization of the phase field formulation for crack propagation with time adaptivity. Comput. Methods Appl. Mech. Eng. 312, 224–253 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the Cross-Disciplinary Program on Numerical Simulation of CEA (France), the French Alternative Energies and Atomic Energy Commission. We thank TGCC-CEA, Bruyères-Le-Châtel, France, for providing us with compute time on the Irene Skylake partition on the French supercomputer Joliot-Curie. G. Rastiello was also supported by the SEISM Institute (http://www.institut-seism.fr).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Rastiello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Badri, M.A., Rastiello, G. (2023). HPC Finite Element Solvers for Phase-Field Models for Fracture in Solids. In: Rossi, P., Tailhan, JL. (eds) Numerical Modeling Strategies for Sustainable Concrete Structures. SSCS 2022. RILEM Bookseries, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-031-07746-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07746-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07745-6

  • Online ISBN: 978-3-031-07746-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics