Skip to main content

Virtual Design Laboratory for Sustainable Fiber Reinforced Concrete Structures: From Discrete Fibers to Structural Optimization Under Uncertainty

  • Conference paper
  • First Online:
Numerical Modeling Strategies for Sustainable Concrete Structures (SSCS 2022)

Part of the book series: RILEM Bookseries ((RILEM,volume 38))

  • 451 Accesses

Abstract

Concrete is one of the most used materials worldwide with a high environmental impact. Over past years, numerous attempts to minimize the associated effects on the environment by using more sustainable materials or by improving the performance of the material (e.g. high strength concrete, fiber reinforcement) have been introduced. The increase in material performance must be accompanied by better models and design approaches to take full advantage of the potential benefits. In this contribution, a discrete fiber and a multi-level model for the analysis of SFRC structures are used to assess the influence of a chosen fiber type, content, and orientation on the structural response. Zero-thickness cohesive interface elements capture the post-cracking behavior. The discrete fibers are modeled using truss elements. The bond between fibers and concrete is modeled using an elastoplastic bond-slip law, and the effects of fiber bending, friction, and matrix spalling are accounted for using a sub-model at the level of the interface element. The predictive capabilities of both models are validated and compared with fiber pull-out experiments. Finally, the prospects of applying complex FE models in conjunction with methods of optimization to design an SFRC tunnel lining segment are discussed. The objective is to minimize the total segment thickness and the fiber content while a constraint ensures that the required failure probability is retained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Monteiro, P.J., Miller, S.A., Horvath, A.: Towards sustainable concrete. Nat. Mater. 16(7), 698–699 (2017)

    Article  Google Scholar 

  2. Katz, A.: Properties of concrete made with recycled aggregate from partially hydrated old concrete. Cem. Concr. Res. 33(5), 703–711 (2003)

    Article  Google Scholar 

  3. Nedeljković, M., Visser, J., Šavija, B., Valcke, S., Schlangen, E.: Use of fine recycled concrete aggregates in concrete: a critical review. J. Build. Eng. 38, 102196 (2021)

    Article  Google Scholar 

  4. Walraven, J.C.: High performance fiber reinforced concrete: progress in knowledge and design codes. Mater. Struct. 42(9), 1247–1260 (2009)

    Article  MathSciNet  Google Scholar 

  5. International federation for structural concrete (fib): fib Model Code for Concrete Structures 2010. Ernst & Sohn (2013)

    Google Scholar 

  6. Lawler, J.S., Zampini, D., Shah, S.P.: Microfiber and macrofiber hybrid fiber-reinforced concrete. J. Mater. Civ. Eng. 17(5), 595–604 (2005)

    Article  Google Scholar 

  7. Di Prisco, M., Plizzari, G., Vandewalle, L.: Fibre reinforced concrete: new design perspectives. Mater. Struct. 42(9), 1261–1281 (2009)

    Article  Google Scholar 

  8. Okamura, H., Ouchi, M.: Self-compacting concrete. Development, present use and future. In: Self-Compacting Concrete: Proceedings of the 1st International RILEM Symposium, pp. 3–14. Rilem Publications, Cachan Cedex, France (1999)

    Google Scholar 

  9. Grünewald, S., Walraven, J.C.: Parameter-study on the influence of steel fibers and coarse aggregate content on the fresh properties of self-compacting concrete. Cem. Concr. Res. 31(12), 1793–1798 (2001)

    Article  Google Scholar 

  10. Martinie, L., Rossi, P., Roussel, N.: Rheology of fiber reinforced cementitious materials: classification and prediction. Cem. Concr. Res. 40(2), 226–234 (2010)

    Article  Google Scholar 

  11. Li, V.C., et al.: On the emergence of 3D printable engineered, strain hardening cementitious composites (ECC/SHCC). Cem. Concr. Res. 132, 106038 (2020)

    Article  Google Scholar 

  12. Yang, E.H., Wang, S., Yang, Y., Li, V.C.: Fiber-bridging constitutive law of engineered cementitious composites. J. Adv. Concr. Technol. 6(1), 181–193 (2008)

    Article  Google Scholar 

  13. Fantilli, A.P., Vallini, P.: A cohesive interface model for the pullout of inclined steel fibers in cementitious matrixes. J. Adv. Concr. Technol. 5(2), 247–258 (2007)

    Article  Google Scholar 

  14. Laranjeira, F., Aguado, A., Molins, C.: Predicting the pullout response of inclined straight steel fibers. Mater. Struct. 43(6), 875–895 (2010)

    Article  Google Scholar 

  15. Laranjeira, F., Molins, C., Aguado, A.: Predicting the pullout response of inclined hooked steel fibers. Cem. Concr. Res. 40(10), 1471–1487 (2010)

    Article  Google Scholar 

  16. Zhan, Y., Meschke, G.: Multilevel computational model for failure analysis of steel-fiber–reinforced concrete structures. J. Eng. Mech. 142(11), 04016090 (2016)

    Article  Google Scholar 

  17. Schauffert, E.A., Cusatis, G.: Lattice discrete particle model for fiber-reinforced concrete. I: theory. J. Eng. Mech. 138(7), 826–833 (2012)

    Article  Google Scholar 

  18. Kang, J., Kim, K., Lim, Y.M., Bolander, J.E.: Modeling of fiber-reinforced cement composites: discrete representation of fiber pullout. Int. J. Solids Struct. 51(10), 1970–1979 (2014)

    Article  Google Scholar 

  19. Gudzulic, V., Neu, G., Gebuhr, G., Anders, S., Meschke, G.: Numerisches Mehrebenen-Modell für Stahlfaserbeton: Von der Faser- zur Strukturebene. Beton und Stahlbetonbau 115(2), 146–157 (2020)

    Article  Google Scholar 

  20. Snozzi, L., Molinari, J.F.: A cohesive element model for mixed mode loading with frictional contact capability. Int. J. Numer. Meth. Eng. 93(5), 510–526 (2013)

    Article  MathSciNet  Google Scholar 

  21. Gudžulić, V., Meschke, G.: Multi-level approach for modelling the post-cracking response of steel fibre reinforced concrete under monotonic and cyclic loading. PAMM 21(1), e202100194 (2021)

    Article  Google Scholar 

  22. Zhan, Y., Meschke, G.: Analytical model for the pullout behavior of straight and hooked-end steel fibers. J. Eng. Mech. 140(12), 04014091 (2014)

    Article  Google Scholar 

  23. Leung, C.K., Shapiro, N.: Optimal steel fiber strength for reinforcement of cementitious materials. J. Mater. Civ. Eng. 11(2), 116–123 (1999)

    Article  Google Scholar 

  24. European Comittee for Standardisation, EN 1992 - Eurocode 2: Design of concrete structures (2005)

    Google Scholar 

  25. International federation for structural concrete (fib): fib Model Code for Concrete Structures 1990 (1993)

    Google Scholar 

  26. Naga Satish Kumar, C., Gunneswara Rao, T.D.: An empirical formula for mode-II fracture energy of concrete. KSCE J. Civ. Eng. 19(3), 689–697 (2015)

    Article  Google Scholar 

  27. Kang, T., Kim, W., Kwak, Y.-K., Hong, S.-G.: The choice of recycled concrete aggregates for flexural members. IABSE Congr. Rep. 18(21), 726–731 (2012)

    Article  Google Scholar 

  28. Neu, G.E., Edler, P., Freitag, S., Gudžulić, V., Meschke, G.: Reliability based optimization of steel-fibre segmental tunnel linings subjected to thrust jack loadings. Eng. Struct. 254, 113752 (2022)

    Article  Google Scholar 

  29. Hemmy, O.: Splitting of SFRC induced by local forces - investigations of tunnel segments without curvature. Sub-report (Annex 3) of the report of subtask 4.4. brite euram. Institut fuer Baustoffem Massivbau und Brandschutz, TU Braunschweig (2001)

    Google Scholar 

Download references

Acknowledgement

Financial support was provided by the German Research Foundation (DFG) in the framework of project B2 of the Collaborative Research Center SFB 837 Interaction modeling in mechanized tunnelling (Project no.: 77309832) and the Priority Programme SPP 2020 Cyclic deterioration of High-Performance Concrete in an experimental-virtual lab (Project no.: 353819637). This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günther Meschke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Neu, G.E., Gudžulic, V., Meschke, G. (2023). Virtual Design Laboratory for Sustainable Fiber Reinforced Concrete Structures: From Discrete Fibers to Structural Optimization Under Uncertainty. In: Rossi, P., Tailhan, JL. (eds) Numerical Modeling Strategies for Sustainable Concrete Structures. SSCS 2022. RILEM Bookseries, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-031-07746-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07746-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07745-6

  • Online ISBN: 978-3-031-07746-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics