Skip to main content

Modeling C-S-H Sorption at the Molecular Scale: Effective Interactions, Stability, and Cavitation

  • Conference paper
  • First Online:
Numerical Modeling Strategies for Sustainable Concrete Structures (SSCS 2022)

Part of the book series: RILEM Bookseries ((RILEM,volume 38))

  • 472 Accesses

Abstract

The behavior of confined water molecules in C-S-H has a great influence on various physical and chemical properties of C-S-H gel, which further determine the macroscale behavior of cement-based materials such as creep, shrinkage, and cracking. Here, using molecular simulations, we investigate the effect of relative humidity (RH) on the behavior of C-S-H at the molecular scale taking as reaction path the interlayer distance (spanning interlayer pores up to small gel pores). The confining pressures, desorption isotherm, the potential of mean force (PMF), stable basal spacings, meta-stable domains, elastic modulus perpendicular to the pore surface, and cavitation of nano-confined water are analyzed. We evaluate these properties as a function of interlayer distance at various RH, ranging from (liquid) saturated (RH = 100%) to completely dried (RH = 0%) conditions at ambient temperature (300 K). From the PMF profiles and pressure isotherms, we can identify equilibrium basal spacings and meta-stable domains. We observe that the stable basal spacing decreases when the RH decreases, therefore interlayer pore shrinkage contributes to drying shrinkage of cement-based materials. We also show that cavitation of water in small C-S-H interlayer spaces is pore size-dependent. Each of these properties can be useful to explain the physical origins of the thermo-hygro-mechanical behavior of cement-based materials and provide a methodology to improve the performance of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdolhosseini Qomi, M.J., Brochard, L., Honorio, T., Maruyama, I., Vandamme, M.: Advances in atomistic modeling and understanding of drying shrinkage in cementitious materials. Cem. Concr. Res. 148, 106536 (2021). https://doi.org/10.1016/j.cemconres.2021.106536

    Article  Google Scholar 

  2. Kunhi Mohamed, A., Parker, S.C., Bowen, P., Galmarini, S.: An atomistic building block description of C-S-H - towards a realistic C-S-H model. Cem. Concr. Res. 107, 221–235 (2018). https://doi.org/10.1016/j.cemconres.2018.01.007

    Article  Google Scholar 

  3. Bauchy, M., Qomi, M.J.A., Ulm, F.-J., Pellenq, R.J.-M.: Order and disorder in calcium–silicate–hydrate. J. Chem. Phys. 140(21), 214503 (2014). https://doi.org/10.1063/1.4878656

    Article  Google Scholar 

  4. Ravikovitch, P.I., Neimark, A.V.: Density functional theory model of adsorption deformation. Langmuir 22(26), 10864–10868 (2006). https://doi.org/10.1021/la061092u

    Article  Google Scholar 

  5. Barrett, E.P., Joyner, L.G., Halenda, P.P.: The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73(1), 373–380 (1951). https://doi.org/10.1021/ja01145a126

    Article  Google Scholar 

  6. Honorio, T., Masara, F., Benboudjema, F.: Heat capacity, isothermal compressibility, isosteric heat of adsorption and thermal expansion of water confined in C-S-H. Cement 6, 100015 (2021). https://doi.org/10.1016/j.cement.2021.100015

    Article  Google Scholar 

  7. Ji, Q., Pellenq, R.J.-M., Van Vliet, K.J.: Comparison of computational water models for simulation of calcium–silicate–hydrate. Comput. Mater. Sci. 53(1), 234–240 (2012). https://doi.org/10.1016/j.commatsci.2011.08.024

    Article  Google Scholar 

  8. Youssef, M., Pellenq, R.J.-M., Yildiz, B.: Glassy nature of water in an ultraconfining disordered material: the case of calcium−silicate−hydrate. J. Am. Chem. Soc. 133(8), 2499–2510 (2011). https://doi.org/10.1021/ja107003a

    Article  Google Scholar 

  9. Bonnaud, P.A., Ji, Q., Coasne, B., Pellenq, R.J.-M., Van Vliet, K.J.: Thermodynamics of water confined in porous calcium-silicate-hydrates. Langmuir 28(31), 11422–11432 (2012). https://doi.org/10.1021/la301738p

    Article  Google Scholar 

  10. Cygan, R.T., Liang, J.-J., Kalinichev, A.G.: Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J. Phys. Chem. B 108(4), 1255–1266 (2004). https://doi.org/10.1021/jp0363287

    Article  Google Scholar 

  11. Honorio, T., Brochard, L., Vandamme, M.: Hydration phase diagram of clay particles from molecular simulations. Langmuir 33(44), 12766–12776 (2017). https://doi.org/10.1021/acs.langmuir.7b03198

    Article  Google Scholar 

  12. Plassard, C., Lesniewska, E., Pochard, I., Nonat, A.: Nanoscale experimental investigation of particle interactions at the origin of the cohesion of cement. Langmuir 21(16), 7263–7270 (2005). https://doi.org/10.1021/la050440+

    Article  Google Scholar 

  13. Pellenq, R.J.-M., Lequeux, N., van Damme, H.: Engineering the bonding scheme in C-S–H: the iono-covalent framework. Cem. Concr. Res. 38(2), 159–174 (2008). https://doi.org/10.1016/j.cemconres.2007.09.026

    Article  Google Scholar 

  14. Oh, J.E., Clark, S.M., Monteiro, P.J.M.: Does the Al substitution in C-S–H(I) change its mechanical property? Cem. Concr. Res. 41(1), 102–106 (2011). https://doi.org/10.1016/j.cemconres.2010.09.010

    Article  Google Scholar 

  15. Oh, J.E., Clark, S.M., Wenk, H.-R., Monteiro, P.J.M.: Experimental determination of bulk modulus of 14Å tobermorite using high pressure synchrotron X-ray diffraction. Cem. Concr. Res. 42(2), 397–403 (2012). https://doi.org/10.1016/j.cemconres.2011.11.004

    Article  Google Scholar 

  16. Bonnaud, P.A., et al.: Interaction grand potential between calcium–silicate–hydrate nanoparticles at the molecular level. Nanoscale 8(7), 4160–4172 (2016). https://doi.org/10.1039/C5NR08142D

    Article  Google Scholar 

  17. Masoumi, S., Zare, S., Valipour, H., Abdolhosseini Qomi, M.J.: Effective interactions between calcium-silicate-hydrate nanolayers. J. Phys. Chem. C 123(8), 4755–4766 (2019). https://doi.org/10.1021/acs.jpcc.8b08146

    Article  Google Scholar 

  18. Honorio, T.: Monte Carlo molecular modeling of temperature and pressure effects on the interactions between crystalline calcium silicate hydrate layers. Langmuir 35(11), 3907–3916 (2019). https://doi.org/10.1021/acs.langmuir.8b04156

    Article  Google Scholar 

  19. Masoumi, S., Valipour, H., Abdolhosseini Qomi, M.J.: Intermolecular forces between nanolayers of crystalline calcium-silicate-hydrates in aqueous medium. J. Phys. Chem. C 121(10), 5565–5572 (2017). https://doi.org/10.1021/acs.jpcc.6b10735

    Article  Google Scholar 

  20. Garbev, K., Beuchle, G., Bornefeld, M., Black, L., Stemmermann, P.: Cell dimensions and composition of nanocrystalline calcium silicate hydrate solid solutions. Part 1: Synchrotron-based X-ray diffraction. J. Am. Ceram. Soc. 91(9), 3005–3014 (2008). https://doi.org/10.1111/j.1551-2916.2008.02484.x

    Article  Google Scholar 

  21. Kalousek, G.L., Prebus, A.F.: Crystal chemistry of hydrous calcium silicates: III, Morphology and other properties of tobermorite and related phases. J Am. Ceram. Soc. 41(4), 124–132 (1958). https://doi.org/10.1111/j.1151-2916.1958.tb13525.x

    Article  Google Scholar 

  22. Matsuyama, H., Young, J.F.: Effects of pH on precipitation of quasi-crystalline calcium silicate hydrate in aqueous solution. Adv. Cem. Res. 12(1), 29–33 (2000). https://doi.org/10.1680/adcr.2000.12.1.29

    Article  Google Scholar 

  23. Kirkpatrick, R.J.: 29Si MAS NMR Study of the Structure of Calcium Silicate Hydrate, p. 13

    Google Scholar 

  24. L’Hôpital, E., Lothenbach, B., Kulik, D.A., Scrivener, K.: Influence of calcium to silica ratio on aluminium uptake in calcium silicate hydrate. Cem. Concr. Res. 85, 111–121 (2016). https://doi.org/10.1016/j.cemconres.2016.01.014

    Article  Google Scholar 

  25. Renaudin, G., Russias, J., Leroux, F., Frizon, F., Cau-dit-Coumes, C.: Structural characterization of C-S–H and C–A–S–H samples—Part I: Long-range order investigated by Rietveld analyses. J. Solid State Chem. 182(12), 3312–3319 (2009). https://doi.org/10.1016/j.jssc.2009.09.026

    Article  Google Scholar 

  26. Sugiyama, D.: Chemical alteration of calcium silicate hydrate (C–S–H) in sodium chloride solution. Cem. Concr. Res. 38(11), 1270–1275 (2008). https://doi.org/10.1016/j.cemconres.2008.06.002

    Article  Google Scholar 

  27. Taylor, H.F.W.: Relationships between calcium silicates and clay minerals. Clay Miner. 3(16), 98–111 (1956). https://doi.org/10.1180/claymin.1956.003.16.06

    Article  Google Scholar 

  28. Morshedifard, A., Masoumi, S., Abdolhosseini Qomi, M.J.: Nanoscale origins of creep in calcium silicate hydrates. Nat. Commun. 9(1), 1785 (2018). https://doi.org/10.1038/s41467-018-04174-z

    Article  Google Scholar 

  29. Maruyama, I., Rymeš, J., Vandamme, M., Coasne, B.: Cavitation of water in hardened cement paste under short-term desorption measurements. Mater. Struct. 51(6), 1–13 (2018). https://doi.org/10.1617/s11527-018-1285-x

    Article  Google Scholar 

  30. Coasne, B.: Multiscale adsorption and transport in hierarchical porous materials. New J. Chem. 40(5), 4078–4094 (2016). https://doi.org/10.1039/C5NJ03194J

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank the financial support of the French National Research Agency (ANR) through the project THEDESCO (ANR-19-CE22-0004-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Masara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Masara, F., Honorio, T., Benboudjema, F. (2023). Modeling C-S-H Sorption at the Molecular Scale: Effective Interactions, Stability, and Cavitation. In: Rossi, P., Tailhan, JL. (eds) Numerical Modeling Strategies for Sustainable Concrete Structures. SSCS 2022. RILEM Bookseries, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-031-07746-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07746-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07745-6

  • Online ISBN: 978-3-031-07746-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics